咨询与建议

限定检索结果

文献类型

  • 3,117 篇 会议
  • 142 册 图书
  • 22 篇 期刊文献

馆藏范围

  • 3,280 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,140 篇 工学
    • 1,954 篇 计算机科学与技术...
    • 1,096 篇 软件工程
    • 404 篇 信息与通信工程
    • 285 篇 电气工程
    • 267 篇 生物工程
    • 217 篇 控制科学与工程
    • 172 篇 生物医学工程(可授...
    • 79 篇 化学工程与技术
    • 73 篇 光学工程
    • 72 篇 机械工程
    • 67 篇 仪器科学与技术
    • 65 篇 电子科学与技术(可...
    • 62 篇 安全科学与工程
    • 55 篇 动力工程及工程热...
    • 54 篇 网络空间安全
  • 776 篇 理学
    • 429 篇 数学
    • 295 篇 生物学
    • 151 篇 统计学(可授理学、...
    • 148 篇 物理学
    • 127 篇 系统科学
    • 89 篇 化学
  • 505 篇 管理学
    • 306 篇 图书情报与档案管...
    • 231 篇 管理科学与工程(可...
    • 95 篇 工商管理
  • 218 篇 医学
    • 193 篇 临床医学
    • 125 篇 基础医学(可授医学...
    • 87 篇 药学(可授医学、理...
    • 55 篇 公共卫生与预防医...
  • 72 篇 法学
    • 70 篇 社会学
  • 51 篇 教育学
    • 47 篇 教育学
  • 35 篇 经济学
  • 31 篇 农学
  • 6 篇 艺术学
  • 4 篇 军事学
  • 1 篇 文学

主题

  • 568 篇 data mining
  • 543 篇 machine learning
  • 242 篇 pattern recognit...
  • 195 篇 deep learning
  • 174 篇 feature extracti...
  • 154 篇 artificial intel...
  • 153 篇 support vector m...
  • 113 篇 accuracy
  • 113 篇 machine learning...
  • 110 篇 training
  • 93 篇 data models
  • 80 篇 neural networks
  • 78 篇 data mining and ...
  • 65 篇 classification
  • 62 篇 sentiment analys...
  • 61 篇 classification a...
  • 59 篇 big data
  • 57 篇 predictive model...
  • 50 篇 face recognition
  • 48 篇 prediction algor...

机构

  • 7 篇 maharishi school...
  • 6 篇 guangdong univer...
  • 5 篇 galgotias univer...
  • 5 篇 centre of interd...
  • 5 篇 pune
  • 5 篇 chitkara univers...
  • 5 篇 king fahd univer...
  • 5 篇 uttaranchal univ...
  • 5 篇 uttaranchal inst...
  • 5 篇 institute of aut...
  • 4 篇 indian institute...
  • 4 篇 shanghai jiao to...
  • 4 篇 chitkara univers...
  • 4 篇 school of inform...
  • 4 篇 indian statistic...
  • 4 篇 south china univ...
  • 4 篇 zhejiang univers...
  • 4 篇 maharishi school...
  • 4 篇 department of cs...
  • 4 篇 university of ca...

作者

  • 9 篇 de-shuang huang
  • 7 篇 coenen frans
  • 7 篇 venkatesh svetha
  • 7 篇 petra perner
  • 7 篇 tianrui li
  • 6 篇 ryszard tadeusie...
  • 6 篇 marcin korytkows...
  • 6 篇 jacek m. zurada
  • 6 篇 krasotkina olga
  • 6 篇 lotfi a. zadeh
  • 6 篇 mottl vadim
  • 6 篇 leszek rutkowski
  • 5 篇 vitoantonio bevi...
  • 5 篇 sankar k. pal
  • 4 篇 waiyamai kitsana
  • 4 篇 sozo inoue
  • 4 篇 sergei o. kuznet...
  • 4 篇 duoqian miao
  • 4 篇 shengli xie
  • 4 篇 hepu deng

语言

  • 2,835 篇 英文
  • 436 篇 其他
  • 45 篇 中文
  • 1 篇 西班牙文
  • 1 篇 土耳其文
检索条件"任意字段=3rd International Conference on Machine Learning and Data Mining in Pattern Recognition"
3281 条 记 录,以下是2421-2430 订阅
排序:
An Unsupervised Emotional Scene Retrieval Framework for Lifelog Videos  3
An Unsupervised Emotional Scene Retrieval Framework for Life...
收藏 引用
3rd IIAI international conference on Advanced Applied Informatics (IIAI-AAI)
作者: Nomiya, Hiroki Morikuni, Atsushi Hochin, Teruhisa Kyoto Inst Technol Sakyo Ku Kyoto 6068585 Japan
In order to promote the utilization of lifelog videos, an effective retrieval framework of the emotional scenes, which are considered to be important scenes, is proposed in this paper. The proposed method is based on ... 详细信息
来源: 评论
Defensibility-based Classification for Argument mining  14
Defensibility-based Classification for Argument Mining
收藏 引用
14th IEEE international conference on data mining (IEEE ICDM)
作者: Kido, Hiroyuki Ohsawa, Yukio Univ Tokyo Sch Engn Bunkyo Ku 7-3-1 Hongo Tokyo 1138656 Japan
This paper shows a preliminary report regarding classification techniques based on argumentation theory in artificial intelligence. A classification problem is defined on a directed graph, i.e., an argumentation frame... 详细信息
来源: 评论
mining the Big data: The Critical Feature Dimension Problem  3
Mining the Big Data: The Critical Feature Dimension Problem
收藏 引用
3rd IIAI international conference on Advanced Applied Informatics (IIAI-AAI)
作者: Liu, Qingzhong Sung, Andrew H. Ribeiro, Bernardete Suryakumar, Divya Sam Houston State Univ Dept Comp Sci Huntsville TX 77341 USA Univ So Mississippi Sch Comp Hattiesburg MS 39406 USA Univ Coimbra Dept Informat Engn P-3030290 Coimbra Portugal Wipro Technol Ltd Appl Machine Learning Mountain View CA 94043 USA
In mining massive datasets, often two of the most important and immediate problems are sampling and feature selection. Proper sampling and feature selection contributes to reducing the size of the dataset while obtain... 详细信息
来源: 评论
Applying machine learning techniques to baseball pitch prediction
Applying machine learning techniques to baseball pitch predi...
收藏 引用
3rd international conference on pattern recognition Applications and Methods, ICPRAM 2014
作者: Hamilton, Michael Hoang, Phuong Layne, Lori Murray, Joseph Padgett, David Stafford, Corey Tran, Hien Mathematics Department Rutgers University New Brunswick NJ United States Department of Mathematics North Carolina State University Raleigh NC United States MIT Lincoln Laboratory Lexington MA United States Department of Applied Physics and Applied Mathematics Columbia University New York NY United States
Major League Baseball, a professional baseball league in the US and Canada, is one of the most popular sports leagues in North America. Partially because of its popularity and the wide availability of data from games,... 详细信息
来源: 评论
Enhanced routing algorithm for opportunistic networking: On the improvement of the basic opportunistic networking routing algorithm by the application of machine learning
Enhanced routing algorithm for opportunistic networking: On ...
收藏 引用
3rd international conference on pattern recognition Applications and Methods, ICPRAM 2014
作者: Janků, Ladislava Smítková Hyniová, Kateřina Institute of Department of Digital Design Faculty of Information Technology Czech Technical University in Prague Thákurova 9 160 00 Praha 6 Czech Republic
The opportunistic communication networks are special communication networks where no assumption is made on the existence of a complete path between two nodes wishing to communicate;the source and destination nodes nee... 详细信息
来源: 评论
Manifold learning in data mining Tasks
Manifold Learning in Data Mining Tasks
收藏 引用
10th international conference on machine learning and data mining (MLDM)
作者: Kuleshov, Alexander Bernstein, Alexander Kharkevich Inst Informat Transmiss Problems RAS I Moscow Russia
Many data mining tasks deal with data which are presented in high dimensional spaces, and the 'curse of dimensionality' phenomena is often an obstacle to the use of many methods for solving these tasks. To avo... 详细信息
来源: 评论
Speeding up support vector machines: Probabilistic versus nearest neighbour methods for condensing training data
Speeding up support vector machines: Probabilistic versus ne...
收藏 引用
3rd international conference on pattern recognition Applications and Methods, ICPRAM 2014
作者: Gamboni, Moïri Garg, Abhijai Grishin, Oleg Oh, Seung Man Sowani, Francis Spalvieri-Kruse, Anthony Toussaint, Godfried T. Zhang, Lingliang Faculty of Science New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
Several methods for reducing the running time of support vector machines (SVMs) are compared in terms of speed-up factor and classification accuracy using seven large real world datasets obtained from the UCI machine ... 详细信息
来源: 评论
ICPRAM 2014 - Proceedings of the 3rd international conference on pattern recognition Applications and Methods
ICPRAM 2014 - Proceedings of the 3rd International Conferenc...
收藏 引用
3rd international conference on pattern recognition Applications and Methods, ICPRAM 2014
The proceedings contain 104 papers. The topics discussed include: multiple segmentation of image stacks;measuring cluster similarity by the travel time between data points;affine invariant shape matching using histogr...
来源: 评论
Finding Multi-dimensional patterns in Healthcare
Finding Multi-dimensional Patterns in Healthcare
收藏 引用
10th international conference on machine learning and data mining (MLDM)
作者: Silva, Andreia Antunes, Claudia Univ Lisbon Inst Super Tecn Dept Comp Sci & Engn P-1699 Lisbon Portugal
The amount of healthcare data is increasing at a rapid pace, and with that is also increasing the need for better and automated analyzes that are able to transform these data into useful knowledge. In turn, this knowl... 详细信息
来源: 评论
Investigating Long Short-Term Memory Networks for Various pattern recognition Problems
Investigating Long Short-Term Memory Networks for Various Pa...
收藏 引用
10th international conference on machine learning and data mining (MLDM)
作者: Otte, Sebastian Liwicki, Marcus Krechel, Dirk Univ Appl Sci Wiesbaden Wiesbaden Germany German Res Ctr Kaiserslautern Germany
The purpose of this paper is to further investigate how and why long short-term memory networks (LSTM) perform so well on several pattern recognition problems. Our contribution is three-fold. First, we describe the ma... 详细信息
来源: 评论