咨询与建议

限定检索结果

文献类型

  • 3,117 篇 会议
  • 141 册 图书
  • 24 篇 期刊文献

馆藏范围

  • 3,281 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,141 篇 工学
    • 1,954 篇 计算机科学与技术...
    • 1,095 篇 软件工程
    • 405 篇 信息与通信工程
    • 287 篇 电气工程
    • 267 篇 生物工程
    • 217 篇 控制科学与工程
    • 172 篇 生物医学工程(可授...
    • 79 篇 化学工程与技术
    • 73 篇 光学工程
    • 72 篇 机械工程
    • 68 篇 仪器科学与技术
    • 65 篇 电子科学与技术(可...
    • 62 篇 安全科学与工程
    • 55 篇 动力工程及工程热...
    • 54 篇 网络空间安全
  • 777 篇 理学
    • 430 篇 数学
    • 296 篇 生物学
    • 151 篇 统计学(可授理学、...
    • 147 篇 物理学
    • 127 篇 系统科学
    • 90 篇 化学
  • 505 篇 管理学
    • 306 篇 图书情报与档案管...
    • 231 篇 管理科学与工程(可...
    • 95 篇 工商管理
  • 218 篇 医学
    • 193 篇 临床医学
    • 125 篇 基础医学(可授医学...
    • 87 篇 药学(可授医学、理...
    • 55 篇 公共卫生与预防医...
  • 72 篇 法学
    • 70 篇 社会学
  • 52 篇 教育学
    • 47 篇 教育学
  • 35 篇 经济学
  • 31 篇 农学
  • 6 篇 艺术学
  • 4 篇 军事学
  • 1 篇 文学

主题

  • 568 篇 data mining
  • 542 篇 machine learning
  • 241 篇 pattern recognit...
  • 195 篇 deep learning
  • 174 篇 feature extracti...
  • 154 篇 artificial intel...
  • 153 篇 support vector m...
  • 113 篇 accuracy
  • 113 篇 machine learning...
  • 111 篇 training
  • 93 篇 data models
  • 80 篇 neural networks
  • 77 篇 data mining and ...
  • 65 篇 classification
  • 62 篇 sentiment analys...
  • 61 篇 classification a...
  • 59 篇 big data
  • 57 篇 predictive model...
  • 50 篇 face recognition
  • 48 篇 prediction algor...

机构

  • 7 篇 maharishi school...
  • 6 篇 guangdong univer...
  • 5 篇 galgotias univer...
  • 5 篇 centre of interd...
  • 5 篇 pune
  • 5 篇 chitkara univers...
  • 5 篇 uttaranchal univ...
  • 5 篇 uttaranchal inst...
  • 5 篇 institute of aut...
  • 4 篇 shanghai jiao to...
  • 4 篇 chitkara univers...
  • 4 篇 school of inform...
  • 4 篇 indian statistic...
  • 4 篇 south china univ...
  • 4 篇 zhejiang univers...
  • 4 篇 maharishi school...
  • 4 篇 department of cs...
  • 4 篇 university of ca...
  • 4 篇 school of comput...
  • 4 篇 department of co...

作者

  • 9 篇 de-shuang huang
  • 7 篇 coenen frans
  • 7 篇 venkatesh svetha
  • 7 篇 petra perner
  • 7 篇 tianrui li
  • 6 篇 ryszard tadeusie...
  • 6 篇 marcin korytkows...
  • 6 篇 jacek m. zurada
  • 6 篇 krasotkina olga
  • 6 篇 lotfi a. zadeh
  • 6 篇 mottl vadim
  • 6 篇 leszek rutkowski
  • 5 篇 vitoantonio bevi...
  • 5 篇 sankar k. pal
  • 4 篇 waiyamai kitsana
  • 4 篇 sozo inoue
  • 4 篇 sergei o. kuznet...
  • 4 篇 duoqian miao
  • 4 篇 shengli xie
  • 4 篇 hepu deng

语言

  • 3,063 篇 英文
  • 209 篇 其他
  • 38 篇 中文
  • 1 篇 西班牙文
  • 1 篇 土耳其文
检索条件"任意字段=3rd International Conference on Machine Learning and Data Mining in Pattern Recognition"
3282 条 记 录,以下是2831-2840 订阅
排序:
Applications of average geodesic distance in manifold learning
收藏 引用
3rd international conference on Rough Sets and Knowledge Technology, RSKT 2008
作者: Zeng, Xianhua School of Computer Science China West Normal University Nanchong 637002 China
Manifold learning has become a hot issue in the research fields of machine learning and data mining. Current manifold learning algorithms assume that the observed data set has the high density. But, how to evaluate th... 详细信息
来源: 评论
Named entity recognition for South Asian languages  3
Named entity recognition for South Asian languages
收藏 引用
IJCNLP Workshop on Named Entity recognition for South and South East Asian Languages, held in conjunction with the 3rd international Joint conference on Natural Language Processing, IJCNLP 2008
作者: Goyal, Amit University of Utah School of Computing Salt Lake CityUT United States
Much work has already been done on building named entity recognition systems. However most of this work has been concentrated on English and other European languages. Hence, building a named entity recognition (NER) s... 详细信息
来源: 评论
3rd international conference on machine learning and data mining in pattern recognition, MLDM 2003
收藏 引用
3rd international conference on machine learning and data mining, MLDM 2003
The proceedings contain 37 papers. The special focus in this conference is on Decision Trees, Clustering and Its Application. The topics include: Introspective learning to build case-based reasoning CBR knowledge cont...
来源: 评论
Multi-relational data mining for Tetratricopeptide Repeats (TPR)-Like Superfamily Members in Leishmania spp.: Acting-by-Connecting Proteins
收藏 引用
3rd IAPR international conference on pattern recognition in Bioinformatics
作者: Girao, Karen T. Oliveira, Fatima C. E. Farias, Kaio M. Maia, Italo M. C. Silva, Samara C. Gadelha, Carla R. F. Carneiro, Laura D. G. Pacheco, Ana C. L. Kamimura, Michel T. Diniz, Michely C. Silva, Maria C. Oliveira, Diana M. Univ Estadual Ceara UECE Nucleo Tarcisio Pimenta Pesquisa Genom & Bioinfor NUGEN Fac Vet BR-60740000 Fortaleza Ceara Brazil
The multi-relational data mining (MrdM) approach looks for patterns that involve multiple tables from a relational database made of complex/structured objects whose normalized representation does require multiple tabl... 详细信息
来源: 评论
Contents
Contents
收藏 引用
international conference on Intelligent System and Knowledge Engineering, ISKE
The following topics are dealt with: AI and expert systems; artificial immune systems and bio-informatics; chaos theory; data mining; fuzzy set theory; genetic algorithm; information retrieval; intelligent control; in... 详细信息
来源: 评论
A Survey on Statistical pattern Feature Extraction
收藏 引用
4th international conference on Intelligent Computing
作者: Ding, Shifei Jia, Weikuan Su, Chunyang Jin, Fengxiang Shi, Zhongzhi China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221008 Peoples R China Acad Sinica Key Lab Intelligent Informat Proc Inst Comop Technol Beijing 100080 Peoples R China Agr Univ Coll Plant Protection Tai An Shandong 271018 Peoples R China Shandong Univ Sci Technol Coll Geoinformation Sci Engn Qingdao 266510 Peoples R China
The goal of statistical pattern feature extraction (SPFE) is 'low loss dimension reduction'. As the key link of pattern recognition, dimension reduction has become the research hot spot and difficulty in the f... 详细信息
来源: 评论
Attribute Division Algorithm Based on Entropy
Attribute Division Algorithm Based on Entropy
收藏 引用
international conference on Innovative Computing, Information and Control (ICICIC)
作者: Liyan Dong Minghui Sun Xiangshi Ren College of Computer Science and Technology Jilin University Changchun China Kochi University of Technology Kochi Japan
In order to preprocess data for data mining algorithms, an attribute division algorithm based on entropy is given through analyzing the physical meaning of information entropy. The algorithm measures the relativity am... 详细信息
来源: 评论
Chinese organization name recognition based on co-training algorithm
Chinese organization name recognition based on co-training a...
收藏 引用
international conference on Intelligent System and Knowledge Engineering, ISKE
作者: Xiao Ke Shaozi Li Department of Cognitive Science Xiamen University Xiamen China
Organization name recognition is the most difficult part in named entity recognition, in order to reduce the use of tagged corpus and use a large amount of untagged corpus, we firstly present using semi-supervised mac... 详细信息
来源: 评论
Support vector machine learning from positive and unlabeled samples
Support vector machine learning from positive and unlabeled ...
收藏 引用
international conference on Intelligent System and Knowledge Engineering, ISKE
作者: Ai-bing Ji Qi-ming Niu Ming-hu Ha College of Medicine Hebei University Baoding Hebei China College of Mathematics and Computer Hebei University Hebei China
In many machine learning settings, labeled samples are difficult to collect while unlabeled samples are abundant. We investigate in this paper the design of support vector machine classification algorithms learning fr... 详细信息
来源: 评论
learning Algorithms with Boosting for Vector Quantization
Learning Algorithms with Boosting for Vector Quantization
收藏 引用
3rd international Symposium on Communications, Control, and Signal Processing (ISCCSP 2008), vol.1
作者: Hiromi Miyajima Noritaka Shigei Michiharu Maeda Shuji Hosoda Department of Electrical Electronics Engineering Kagoshima University Japan Fukuoka Institute of Technology Japan
There have been proposed many learning algorithms for VQ based on the steepest descend method. However, any learning algorithm known as a superior one does not always work well. This paper proposes a new learning algo... 详细信息
来源: 评论