咨询与建议

限定检索结果

文献类型

  • 3,922 篇 会议
  • 108 篇 期刊文献
  • 80 册 图书

馆藏范围

  • 4,109 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,628 篇 工学
    • 3,283 篇 计算机科学与技术...
    • 1,893 篇 生物医学工程(可授...
    • 1,553 篇 软件工程
    • 992 篇 光学工程
    • 501 篇 生物工程
    • 379 篇 电气工程
    • 319 篇 电子科学与技术(可...
    • 269 篇 信息与通信工程
    • 201 篇 控制科学与工程
    • 157 篇 仪器科学与技术
    • 63 篇 核科学与技术
    • 45 篇 力学(可授工学、理...
    • 37 篇 安全科学与工程
    • 36 篇 化学工程与技术
    • 34 篇 机械工程
    • 28 篇 建筑学
  • 2,707 篇 医学
    • 1,923 篇 特种医学
    • 1,682 篇 临床医学
    • 666 篇 基础医学(可授医学...
    • 466 篇 药学(可授医学、理...
    • 322 篇 医学技术(可授医学...
    • 62 篇 公共卫生与预防医...
  • 1,105 篇 理学
    • 573 篇 生物学
    • 516 篇 物理学
    • 482 篇 数学
    • 143 篇 统计学(可授理学、...
    • 60 篇 化学
  • 141 篇 管理学
    • 94 篇 图书情报与档案管...
    • 50 篇 管理科学与工程(可...
  • 30 篇 教育学
    • 30 篇 教育学
  • 9 篇 农学
  • 7 篇 经济学
  • 6 篇 法学
  • 1 篇 军事学

主题

  • 334 篇 image segmentati...
  • 183 篇 magnetic resonan...
  • 181 篇 deep learning
  • 161 篇 medical imaging
  • 129 篇 image registrati...
  • 84 篇 image enhancemen...
  • 79 篇 segmentation
  • 76 篇 image reconstruc...
  • 71 篇 medical image se...
  • 68 篇 computerized tom...
  • 66 篇 artificial intel...
  • 59 篇 image processing...
  • 54 篇 deformation
  • 52 篇 pattern recognit...
  • 49 篇 image classifica...
  • 48 篇 convolutional ne...
  • 46 篇 magnetic resonan...
  • 45 篇 semi-supervised ...
  • 42 篇 contrastive lear...
  • 41 篇 image analysis

机构

  • 31 篇 ucl ctr med imag...
  • 21 篇 queens univ sch ...
  • 21 篇 imperial coll lo...
  • 20 篇 shenzhen univ ma...
  • 19 篇 kings coll londo...
  • 19 篇 simon fraser uni...
  • 19 篇 shenzhen univ me...
  • 17 篇 ucl ctr med imag...
  • 17 篇 chinese univ hon...
  • 16 篇 tencent jarvis l...
  • 15 篇 centre for medic...
  • 15 篇 shanghai united ...
  • 15 篇 department of co...
  • 15 篇 univ n carolina ...
  • 14 篇 national center ...
  • 14 篇 shanghai jiao to...
  • 14 篇 harvard med sch ...
  • 13 篇 biomedical image...
  • 13 篇 univ penn dept r...
  • 13 篇 shanghaitech uni...

作者

  • 93 篇 rueckert daniel
  • 76 篇 navab nassir
  • 71 篇 shen dinggang
  • 50 篇 ourselin sebasti...
  • 48 篇 hamarneh ghassan
  • 44 篇 yang guang-zhong
  • 33 篇 zheng yefeng
  • 31 篇 ni dong
  • 29 篇 duncan james s.
  • 29 篇 zhou s. kevin
  • 28 篇 glocker ben
  • 26 篇 yang xin
  • 25 篇 comaniciu dorin
  • 25 篇 abugharbieh rafe...
  • 25 篇 zheng guoyan
  • 24 篇 yap pew-thian
  • 24 篇 fichtinger gabor
  • 23 篇 golland polina
  • 23 篇 abolmaesumi pura...
  • 22 篇 collins d. louis

语言

  • 4,057 篇 英文
  • 50 篇 其他
  • 8 篇 中文
检索条件"任意字段=3rd International Conference on Medical Image Computing and Computer-Assisted Intervention"
4110 条 记 录,以下是101-110 订阅
排序:
CT-Guided, Unsupervised Super-Resolution Reconstruction of Single 3D Magnetic Resonance image  26th
CT-Guided, Unsupervised Super-Resolution Reconstruction of S...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wang, Jiale Heimann, Alexander F. Tannast, Moritz Zheng, Guoyan Shanghai Jiao Tong Univ Inst Med Robot Sch Biomed Engn 800 Dongchuan Rd Shanghai 200240 Peoples R China Univ Fribourg HFR Cantonal Hosp Dept Orthopaed Surg Fribourg Switzerland
Deep learning-based algorithms for single MR image (MRI) super-resolution have shown great potential in enhancing the resolution of low-quality images. However, many of these methods rely on supervised training with p... 详细信息
来源: 评论
A Deep Learning-Cryptography Hybrid Approach for Ensuring medical image Confidentiality  3
A Deep Learning-Cryptography Hybrid Approach for Ensuring Me...
收藏 引用
3rd international conference on Electrical, Electronics, Information and Communication Technologies, ICEEICT 2024
作者: Chinta, Hitesh Surya Sai, Maganti Akshita Uma Kavitha, C.R. Amrita School of Computing Department of Computer Science & Engineering Amrita Vishwa Vidyapeetham Bengaluru India
This paper addresses the important need for security measures in the transmission of medical images to ensure the confidentiality of sensitive patient information. Leveraging a synergistic combination of advanced cryp... 详细信息
来源: 评论
Incremental Augmentation Strategies for Personalised Continual Learning in Digital Pathology Contexts  3rd
Incremental Augmentation Strategies for Personalised Continu...
收藏 引用
3rd international Workshop on Applications of medical Artificial Intelligence, AMAI 2024 held in conjunction with the 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
作者: Patra, Arijit UCB SloughSL1 3WE United Kingdom
Like most connectionist systems, deep networks have been found to be prone to catastrophic forgetting effects. This makes generalization of deep neural network pipelines a challenge as new additions to prediction requ... 详细信息
来源: 评论
Cross-Adversarial Local Distribution Regularization for Semi-supervised medical image Segmentation  26th
Cross-Adversarial Local Distribution Regularization for Semi...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Thanh Nguyen-Duc Trung Le Bammer, Roland Zhao, He Cai, Jianfei Dinh Phung Monash Univ Melbourne Australia CSIROs Data61 Melbourne Australia
medical semi-supervised segmentation is a technique where a model is trained to segment objects of interest in medical images with limited annotated data. Existing semi-supervised segmentation methods are usually base... 详细信息
来源: 评论
A Review of 3D Reconstruction Techniques for Deformable Tissues in Robotic Surgery  9th
A Review of 3D Reconstruction Techniques for Deformable Tiss...
收藏 引用
27th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Xu, Mengya Guo, Ziqi Wang, An Bai, Long Ren, Hongliang Chinese Univ Hong Kong CUHK Dept Elect Engn Sha Tin Hong Kong Peoples R China CUHK Shenzhen Res Inst Shenzhen Peoples R China Natl Univ Singapore Dept Biomed Engn Singapore Singapore
As a crucial and intricate task in robotic minimally invasive surgery, reconstructing surgical scenes using stereo or monocular endoscopic video holds immense potential for clinical applications. NeRF-based techniques... 详细信息
来源: 评论
Deep Learning for Resolving 3D Microstructural Changes in the Fibrotic Liver  3rd
Deep Learning for Resolving 3D Microstructural Changes in ...
收藏 引用
3rd international Workshop on Applications of medical Artificial Intelligence, AMAI 2024 held in conjunction with the 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
作者: Laprade, William M. Pirzamanebin, Behnaz Mokso, Rajmund Nilsson, Julia Dahl, Vedrana A. Dahl, Anders B. Holmberg, Dan Schmidt-Christensen, Anja Department of Applied Mathematics and Computer Science Technical University of Denmark Kgs. Lyngby Denmark Quantification of Imaging Data from MAX IV DTU Kongens Lyngby Denmark Department of Statistics Lund University Lund Sweden Department of Physics Technical University of Denmark Kgs. Lyngby Denmark Laboratory Medicine University of California San Francisco San Francisco United States Department of Experimental Medical Sciences Lund University Malmö Sweden Department of Medical Biosciences Umeå University Umeå Sweden Lund University Diabetes Center Lund University Malmö Sweden
Portal hypertension, a life-threatening complication of cirrhosis, is largely triggered by increased intrahepatic vascular resistance. Fibrosis, regenerative nodule formation, intrahepatic angiogenisis and sinusoidal ... 详细信息
来源: 评论
A Vision Transformer with Adaptive Cross-image and Cross-Resolution Attention  9th
A Vision Transformer with Adaptive Cross-Image and Cross-Res...
收藏 引用
27th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Murray, Benjamin A. K. Tan, Wei R. Canas, Liane S. Smith, Catherine H. Mahil, Satveer K. Ourselin, Sebastien Modat, Marc Kings Coll London Biomed Engn & Image Sci London SE1 7EH England Guys & St Thomas NHS Fdn Trust St Johns Inst Dermatol London England Kings Coll London London England
Vision Transformers (ViTs) are the current state-of-the-art in deep learning for computer vision tasks. They are trained on vast datasets and are capable of useful downstream tasks through clever use of the attention ... 详细信息
来源: 评论
Structure-Preserving Instance Segmentation via Skeleton-Aware Distance Transform  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lin, Zudi Wei, Donglai Gupta, Aarush Liu, Xingyu Sun, Deqing Pfister, Hanspeter Harvard Univ Cambridge MA 02138 USA Boston Coll Chestnut Hill MA 02167 USA CMU Pittsburgh PA USA Google Res Mountain View CA USA
Objects with complex structures pose significant challenges to existing instance segmentation methods that rely on boundary or affinity maps, which are vulnerable to small errors around contacting pixels that cause no... 详细信息
来源: 评论
Self-adaptive Adversarial Training for Robust medical Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wang, Fu Fu, Zeyu Zhang, Yanghao Ruan, Wenjie Univ Exeter Exeter EX4 4QF Devon England Univ Liverpool Liverpool L69 3BX Merseyside England
Adversarial training has been demonstrated to be one of the most effective approaches to training deep neural networks that are robust to malicious perturbations. Research on effectively applying it to produce robust ... 详细信息
来源: 评论
Self-aware and Cross-Sample Prototypical Learning for Semi-supervised medical image Segmentation  26th
Self-aware and Cross-Sample Prototypical Learning for Semi-s...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Zhang, Zhenxi Ran, Ran Tian, Chunna Zhou, Heng Li, Xin Yang, Fan Jiao, Zhicheng Xidian Univ 2 South Taibai Rd Xian Shanxi Peoples R China Xi An Jiao Tong Univ Ctr Canc Affiliated Hosp 1 Xian Peoples R China AIQ Abu Dhabi U Arab Emirates Brown Univ Warren Alpert Med Sch Dept Diagnost Imaging Providence RI 02912 USA
Consistency learning plays a crucial role in semi-supervised medical image segmentation as it enables the effective utilization of limited annotated data while leveraging the abundance of unannotated data. The effecti... 详细信息
来源: 评论