咨询与建议

限定检索结果

文献类型

  • 3,922 篇 会议
  • 108 篇 期刊文献
  • 80 册 图书

馆藏范围

  • 4,109 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,628 篇 工学
    • 3,283 篇 计算机科学与技术...
    • 1,893 篇 生物医学工程(可授...
    • 1,553 篇 软件工程
    • 992 篇 光学工程
    • 501 篇 生物工程
    • 379 篇 电气工程
    • 319 篇 电子科学与技术(可...
    • 269 篇 信息与通信工程
    • 201 篇 控制科学与工程
    • 157 篇 仪器科学与技术
    • 63 篇 核科学与技术
    • 45 篇 力学(可授工学、理...
    • 37 篇 安全科学与工程
    • 36 篇 化学工程与技术
    • 34 篇 机械工程
    • 28 篇 建筑学
  • 2,707 篇 医学
    • 1,923 篇 特种医学
    • 1,682 篇 临床医学
    • 666 篇 基础医学(可授医学...
    • 466 篇 药学(可授医学、理...
    • 322 篇 医学技术(可授医学...
    • 62 篇 公共卫生与预防医...
  • 1,105 篇 理学
    • 573 篇 生物学
    • 516 篇 物理学
    • 482 篇 数学
    • 143 篇 统计学(可授理学、...
    • 60 篇 化学
  • 141 篇 管理学
    • 94 篇 图书情报与档案管...
    • 50 篇 管理科学与工程(可...
  • 30 篇 教育学
    • 30 篇 教育学
  • 9 篇 农学
  • 7 篇 经济学
  • 6 篇 法学
  • 1 篇 军事学

主题

  • 334 篇 image segmentati...
  • 183 篇 magnetic resonan...
  • 181 篇 deep learning
  • 161 篇 medical imaging
  • 129 篇 image registrati...
  • 84 篇 image enhancemen...
  • 79 篇 segmentation
  • 76 篇 image reconstruc...
  • 71 篇 medical image se...
  • 68 篇 computerized tom...
  • 66 篇 artificial intel...
  • 59 篇 image processing...
  • 54 篇 deformation
  • 52 篇 pattern recognit...
  • 49 篇 image classifica...
  • 48 篇 convolutional ne...
  • 46 篇 magnetic resonan...
  • 45 篇 semi-supervised ...
  • 42 篇 contrastive lear...
  • 41 篇 image analysis

机构

  • 31 篇 ucl ctr med imag...
  • 21 篇 queens univ sch ...
  • 21 篇 imperial coll lo...
  • 20 篇 shenzhen univ ma...
  • 19 篇 kings coll londo...
  • 19 篇 simon fraser uni...
  • 19 篇 shenzhen univ me...
  • 17 篇 ucl ctr med imag...
  • 17 篇 chinese univ hon...
  • 16 篇 tencent jarvis l...
  • 15 篇 centre for medic...
  • 15 篇 shanghai united ...
  • 15 篇 department of co...
  • 15 篇 univ n carolina ...
  • 14 篇 national center ...
  • 14 篇 shanghai jiao to...
  • 14 篇 harvard med sch ...
  • 13 篇 biomedical image...
  • 13 篇 univ penn dept r...
  • 13 篇 shanghaitech uni...

作者

  • 93 篇 rueckert daniel
  • 76 篇 navab nassir
  • 71 篇 shen dinggang
  • 50 篇 ourselin sebasti...
  • 48 篇 hamarneh ghassan
  • 44 篇 yang guang-zhong
  • 33 篇 zheng yefeng
  • 31 篇 ni dong
  • 29 篇 duncan james s.
  • 29 篇 zhou s. kevin
  • 28 篇 glocker ben
  • 26 篇 yang xin
  • 25 篇 comaniciu dorin
  • 25 篇 abugharbieh rafe...
  • 25 篇 zheng guoyan
  • 24 篇 yap pew-thian
  • 24 篇 fichtinger gabor
  • 23 篇 golland polina
  • 23 篇 abolmaesumi pura...
  • 22 篇 collins d. louis

语言

  • 4,057 篇 英文
  • 50 篇 其他
  • 8 篇 中文
检索条件"任意字段=3rd International Conference on Medical Image Computing and Computer-Assisted Intervention"
4110 条 记 录,以下是121-130 订阅
排序:
Learning Transferable Object-Centric Diffeomorphic Transformations for Data Augmentation in medical image Segmentation  26th
Learning Transferable Object-Centric Diffeomorphic Transform...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Kumar, Nilesh Gyawali, Prashnna K. Ghimire, Sandesh Wang, Linwei Rochester Inst Technol Rochester NY 14623 USA West Virginia Univ Morgantown WV 26506 USA Qualcomm Inc San Diego CA USA
Obtaining labelled data in medical image segmentation is challenging due to the need for pixel-level annotations by experts. Recent works have shown that augmenting the object of interest with deformable transformatio... 详细信息
来源: 评论
Text-Guided Cross-Position Attention for Segmentation: Case of medical image  26th
Text-Guided Cross-Position Attention for Segmentation: Case ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lee, Go-Eun Kim, Seon Ho Cho, Jungchan Choi, Sang Tae Choi, Sang-Il Dankook Univ Yongin Gyeonggi Do South Korea Univ Southern Calif Los Angeles CA 90007 USA Gachon Univ Seongnam Gyeonggi Do South Korea Chung Ang Univ Coll Med Seoul South Korea
We propose a novel text-guided cross-position attention module which aims at applying a multi-modality of text and image to position attention in medical image segmentation. To match the dimension of the text feature ... 详细信息
来源: 评论
SwinUNETR-V2: Stronger Swin Transformers with Stagewise Convolutions for 3D medical image Segmentation  26th
SwinUNETR-V2: Stronger Swin Transformers with Stagewise Conv...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: He, Yufan Nath, Vishwesh Yang, Dong Tang, Yucheng Myronenko, Andriy Xu, Daguang NVidia Santa Clara CA 95051 USA
Transformers for medical image segmentation have attracted broad interest. Unlike convolutional networks (CNNs), transformers use self-attentions that do not have a strong inductive bias. This gives transformers the a... 详细信息
来源: 评论
11th international Workshop on Biomedical image Registration, WBIR 2024, held in conjunction with the 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
11th International Workshop on Biomedical Image Registration...
收藏 引用
11th international Workshop on Biomedical image Registration, WBIR 2024, held in conjunction with the 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
The proceedings contain 28 papers. The special focus in this conference is on Biomedical image Registration. The topics include: Large Deformation Registration with A Confidence-Guided Network;unleashing Registra...
来源: 评论
PMC-CLIP: Contrastive Language-image Pre-training Using Biomedical Documents  26th
PMC-CLIP: Contrastive Language-Image Pre-training Using Biom...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lin, Weixiong Zhao, Ziheng Zhang, Xiaoman Wu, Chaoyi Zhang, Ya Wang, Yanfeng Xie, Weidi Shanghai Jiao Tong Univ Cooperat Medianet Innovat Ctr Shanghai Peoples R China Shanghai AI Lab Shanghai Peoples R China
Foundation models trained on large-scale dataset gain a recent surge in CV and NLP. In contrast, development in biomedical domain lags far behind due to data scarcity. To address this issue, we build and release PMC-O... 详细信息
来源: 评论
Pre-trained Diffusion Models for Plug-and-Play medical image Enhancement  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Ma, Jun Zhu, Yuanzhi You, Chenyu Wang, Bo Univ Hlth Network Peter Munk Cardiac Ctr Toronto ON Canada Univ Toronto Dept Lab Med & Pathobiol Toronto ON Canada Vector Inst Artificial Intelligence Toronto ON Canada Swiss Fed Inst Technol Dept Informat Technol & Elect Engn Zurich Switzerland Yale Univ Dept Elect Engn New Haven CT USA Univ Toronto Dept Comp Sci Toronto ON Canada Univ Hlth Network AI Hub Toronto ON Canada
Deep learning-based medical image enhancement methods (e.g., denoising and super-resolution) mainly rely on paired data and correspondingly the well-trained models can only handle one type of task. In this paper, we a... 详细信息
来源: 评论
Co-learning Semantic-Aware Unsupervised Segmentation for Pathological image Registration  26th
Co-learning Semantic-Aware Unsupervised Segmentation for Pat...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Liu, Yang Gu, Shi Univ Elect Sci & Technol China Chengdu Peoples R China
The registration of pathological images plays an important role in medical applications. Despite its significance, most researchers in this field primarily focus on the registration of normal tissue into normal tissue... 详细信息
来源: 评论
15th international Workshop on Machine Learning in medical Imaging, MLMI 2024 was held in conjunction with the 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
15th International Workshop on Machine Learning in Medical I...
收藏 引用
15th international Workshop on Machine Learning in medical Imaging, MLMI 2024 was held in conjunction with the 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
The proceedings contain 63 papers. The special focus in this conference is on Machine Learning in medical Imaging. The topics include: IRUM: An image Representation and Unified Learning Method for Breast Can...
来源: 评论
SegNetr: Rethinking the Local-Global Interactions and Skip Connections in U-Shaped Networks  26th
SegNetr: Rethinking the Local-Global Interactions and Skip C...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Cheng, Junlong Gao, Chengrui Wang, Fengjie Zhu, Min Sichuan Univ Coll Comp Sci Chengdu 610065 Peoples R China
Recently, U-shaped networks have dominated the field of medical image segmentation due to their simple and easily tuned structure. However, existing U-shaped segmentation networks: 1) mostly focus on designing complex... 详细信息
来源: 评论
Dynamic Curriculum Learning via In-Domain Uncertainty for medical image Classification  26th
Dynamic Curriculum Learning via In-Domain Uncertainty for Me...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Li, Chaoyi Li, Meng Peng, Can Lovell, Brian C. Univ Queensland Sch EECS St Lucia Qld 4072 Australia CSIRO DATA 61 Robot & Autonomous Syst Grp Pullenvale Australia
This paper presents an innovative approach to curriculum learning, which is a technique used to train learning models. Curriculum learning is inspired by the way humans learn, starting with simple examples and gradual... 详细信息
来源: 评论