咨询与建议

限定检索结果

文献类型

  • 3,922 篇 会议
  • 108 篇 期刊文献
  • 80 册 图书

馆藏范围

  • 4,109 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,628 篇 工学
    • 3,283 篇 计算机科学与技术...
    • 1,893 篇 生物医学工程(可授...
    • 1,553 篇 软件工程
    • 992 篇 光学工程
    • 501 篇 生物工程
    • 379 篇 电气工程
    • 319 篇 电子科学与技术(可...
    • 269 篇 信息与通信工程
    • 201 篇 控制科学与工程
    • 157 篇 仪器科学与技术
    • 63 篇 核科学与技术
    • 45 篇 力学(可授工学、理...
    • 37 篇 安全科学与工程
    • 36 篇 化学工程与技术
    • 34 篇 机械工程
    • 28 篇 建筑学
  • 2,707 篇 医学
    • 1,923 篇 特种医学
    • 1,682 篇 临床医学
    • 666 篇 基础医学(可授医学...
    • 466 篇 药学(可授医学、理...
    • 322 篇 医学技术(可授医学...
    • 62 篇 公共卫生与预防医...
  • 1,105 篇 理学
    • 573 篇 生物学
    • 516 篇 物理学
    • 482 篇 数学
    • 143 篇 统计学(可授理学、...
    • 60 篇 化学
  • 141 篇 管理学
    • 94 篇 图书情报与档案管...
    • 50 篇 管理科学与工程(可...
  • 30 篇 教育学
    • 30 篇 教育学
  • 9 篇 农学
  • 7 篇 经济学
  • 6 篇 法学
  • 1 篇 军事学

主题

  • 334 篇 image segmentati...
  • 183 篇 magnetic resonan...
  • 181 篇 deep learning
  • 161 篇 medical imaging
  • 129 篇 image registrati...
  • 84 篇 image enhancemen...
  • 79 篇 segmentation
  • 76 篇 image reconstruc...
  • 71 篇 medical image se...
  • 68 篇 computerized tom...
  • 66 篇 artificial intel...
  • 59 篇 image processing...
  • 54 篇 deformation
  • 52 篇 pattern recognit...
  • 49 篇 image classifica...
  • 48 篇 convolutional ne...
  • 46 篇 magnetic resonan...
  • 45 篇 semi-supervised ...
  • 42 篇 contrastive lear...
  • 41 篇 image analysis

机构

  • 31 篇 ucl ctr med imag...
  • 21 篇 queens univ sch ...
  • 21 篇 imperial coll lo...
  • 20 篇 shenzhen univ ma...
  • 19 篇 kings coll londo...
  • 19 篇 simon fraser uni...
  • 19 篇 shenzhen univ me...
  • 17 篇 ucl ctr med imag...
  • 17 篇 chinese univ hon...
  • 16 篇 tencent jarvis l...
  • 15 篇 centre for medic...
  • 15 篇 shanghai united ...
  • 15 篇 department of co...
  • 15 篇 univ n carolina ...
  • 14 篇 national center ...
  • 14 篇 shanghai jiao to...
  • 14 篇 harvard med sch ...
  • 13 篇 biomedical image...
  • 13 篇 univ penn dept r...
  • 13 篇 shanghaitech uni...

作者

  • 93 篇 rueckert daniel
  • 76 篇 navab nassir
  • 71 篇 shen dinggang
  • 50 篇 ourselin sebasti...
  • 48 篇 hamarneh ghassan
  • 44 篇 yang guang-zhong
  • 33 篇 zheng yefeng
  • 31 篇 ni dong
  • 29 篇 duncan james s.
  • 29 篇 zhou s. kevin
  • 28 篇 glocker ben
  • 26 篇 yang xin
  • 25 篇 comaniciu dorin
  • 25 篇 abugharbieh rafe...
  • 25 篇 zheng guoyan
  • 24 篇 yap pew-thian
  • 24 篇 fichtinger gabor
  • 23 篇 golland polina
  • 23 篇 abolmaesumi pura...
  • 22 篇 collins d. louis

语言

  • 4,057 篇 英文
  • 50 篇 其他
  • 8 篇 中文
检索条件"任意字段=3rd International Conference on Medical Image Computing and Computer-Assisted Intervention"
4110 条 记 录,以下是131-140 订阅
排序:
15th international Workshop on Machine Learning in medical Imaging, MLMI 2024 was held in conjunction with the 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
15th International Workshop on Machine Learning in Medical I...
收藏 引用
15th international Workshop on Machine Learning in medical Imaging, MLMI 2024 was held in conjunction with the 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
The proceedings contain 63 papers. The special focus in this conference is on Machine Learning in medical Imaging. The topics include: IRUM: An image Representation and Unified Learning Method for Breast Can...
来源: 评论
Understanding Silent Failures in medical image Classification  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Bungert, Till J. Kobelke, Levin Jaeger, Paul F. German Canc Res Ctr Interact Machine Learning Grp Heidelberg Germany DKFZ Helmholtz Imaging Heidelberg Germany
To ensure the reliable use of classification systems in medical applications, it is crucial to prevent silent failures. This can be achieved by either designing classifiers that are robust enough to avoid failures in ... 详细信息
来源: 评论
Few Shot medical image Segmentation with Cross Attention Transformer  26th
Few Shot Medical Image Segmentation with Cross Attention Tra...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lin, Yi Chen, Yufan Cheng, Kwang-Ting Chen, Hao Hong Kong Univ Sci & Technol Hong Kong Peoples R China
medical image segmentation has made significant progress in recent years. Deep learning-based methods are recognized as data-hungry techniques, requiring large amounts of data with manual annotations. However, manual ... 详细信息
来源: 评论
Enhanced Fetal Development Assessment via Contour Detection and CRL Estimation  3
Enhanced Fetal Development Assessment via Contour Detection ...
收藏 引用
3rd IEEE international conference on Control, Instrumentation, Energy and Communication, CIEC 2024
作者: Sriraam, Natarajan Chinta, Babu Suresh, Seshadhri Sudharshan, Suresh Ramaiah Institute of Technology Center for Medical Electronics and Computing Department of Medical Electronics Engineering Bangalore India Center for Medical Electronics and Computing Ramaiah Institute of Technology Bangalore India Mediscans Pvt Ltd Chennai India
Accurate fetal growth evaluation is critical for monitoring pregnancy health and delivering appropriate prenatal treatment. We provide a unique strategy for improving the precision of fetal growth assessment by mergin... 详细信息
来源: 评论
All You Need Is a Guiding Hand: Mitigating Shortcut Bias in Deep Learning Models for medical Imaging  2nd
All You Need Is a Guiding Hand: Mitigating Shortcut Bias in...
收藏 引用
2nd international Workshop on Fairness of AI in medical Imaging, FAIMI 2024, and 3rd international Workshop on Ethical and Philosophical Issues in medical Imaging, EPIMI 2024, Held in Conjunction with the international conference on medical image computing and computer assisted interventions, MICCAI 2024
作者: Boland, Christopher Anderson, Owen Goatman, Keith A. Hipwell, John Tsaftaris, Sotirios A. Dahdouh, Sonia Canon Medical Research Europe EdinburghEH6 5NP United Kingdom School of Engineering The University of Edinburgh EdinburghEH9 3FG United Kingdom
Deep learning models for medical imaging are prone to learning shortcut solutions that rely on spurious correlations instead of clinically meaningful features, leading to poor generalization to new data. We propose an... 详细信息
来源: 评论
Maximum Entropy on Erroneous Predictions: Improving Model Calibration for medical image Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Larrazabal, Agostina J. Martinez, Cesar Dolz, Jose Ferrante, Enzo UNL CONICET Res Inst Signals Syst & Computat Intelligence SinciFICH Santa Fe Argentina ETS Montreal LIVIA Montreal PQ Canada Tryolabs Montevideo Uruguay
Modern deep neural networks achieved remarkable progress in medical image segmentation tasks. However, it has recently been observed that they tend to produce overconfident estimates, even in situations of high uncert... 详细信息
来源: 评论
Unsupervised Learning for Feature Extraction and Temporal Alignment of 3D+t Point Clouds of Zebrafish Embryos  26th
Unsupervised Learning for Feature Extraction and Temporal Al...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chen, Zhu Laube, Ina Stegmaier, Johannes Rhein Westfal TH Aachen Inst Imaging & Comp Vis Aachen Germany
Zebrafish are widely used in biomedical research and developmental stages of their embryos often need to be synchronized for further analysis. We present an unsupervised approach to extract descriptive features from 3... 详细信息
来源: 评论
15th international Workshop on Computational Diffusion MRI, CDMRI 2024, held in conjunction with 27th international conference on medical image computing and computer-assisted intervention, MICCAI 2024
15th International Workshop on Computational Diffusion MRI, ...
收藏 引用
15th international Workshop on Computational Diffusion MRI, CDMRI 2024, held in conjunction with 27th international conference on medical image computing and computer-assisted intervention, MICCAI 2024
The proceedings contain 19 papers. The special focus in this conference is on Computational Diffusion MRI. The topics include: Ground-Truth Effects in Learning-Based Fiber Orientation Distribution Estimation in&#...
来源: 评论
MedGen3D: A Deep Generative Framework for Paired 3D image and Mask Generation  26th
MedGen3D: A Deep Generative Framework for Paired 3D Image an...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Han, Kun Xiong, Yifeng You, Chenyu Khosravi, Pooya Sun, Shanlin Yan, Xiangyi Duncan, James S. Xie, Xiaohui Univ Calif Irvine Irvine CA 92697 USA Yale Univ New Haven CT USA
Acquiring and annotating sufficient labeled data is crucial in developing accurate and robust learning-based models, but obtaining such data can be challenging in many medical image segmentation tasks. One promising s... 详细信息
来源: 评论
SwIPE: Efficient and Robust medical image Segmentation with Implicit Patch Embeddings  26th
SwIPE: Efficient and Robust Medical Image Segmentation with ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Zhang, Yejia Gu, Pengfei Sapkota, Nishchal Chen, Danny Z. Univ Notre Dame Notre Dame IN 46556 USA
Modern medical image segmentation methods primarily use discrete representations in the form of rasterized masks to learn features and generate predictions. Although effective, this paradigm is spatially inflexible, s... 详细信息
来源: 评论