咨询与建议

限定检索结果

文献类型

  • 3,922 篇 会议
  • 108 篇 期刊文献
  • 80 册 图书

馆藏范围

  • 4,109 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,628 篇 工学
    • 3,283 篇 计算机科学与技术...
    • 1,893 篇 生物医学工程(可授...
    • 1,553 篇 软件工程
    • 992 篇 光学工程
    • 501 篇 生物工程
    • 379 篇 电气工程
    • 319 篇 电子科学与技术(可...
    • 269 篇 信息与通信工程
    • 201 篇 控制科学与工程
    • 157 篇 仪器科学与技术
    • 63 篇 核科学与技术
    • 45 篇 力学(可授工学、理...
    • 37 篇 安全科学与工程
    • 36 篇 化学工程与技术
    • 34 篇 机械工程
    • 28 篇 建筑学
  • 2,707 篇 医学
    • 1,923 篇 特种医学
    • 1,682 篇 临床医学
    • 666 篇 基础医学(可授医学...
    • 466 篇 药学(可授医学、理...
    • 322 篇 医学技术(可授医学...
    • 62 篇 公共卫生与预防医...
  • 1,105 篇 理学
    • 573 篇 生物学
    • 516 篇 物理学
    • 482 篇 数学
    • 143 篇 统计学(可授理学、...
    • 60 篇 化学
  • 141 篇 管理学
    • 94 篇 图书情报与档案管...
    • 50 篇 管理科学与工程(可...
  • 30 篇 教育学
    • 30 篇 教育学
  • 9 篇 农学
  • 7 篇 经济学
  • 6 篇 法学
  • 1 篇 军事学

主题

  • 334 篇 image segmentati...
  • 183 篇 magnetic resonan...
  • 181 篇 deep learning
  • 161 篇 medical imaging
  • 129 篇 image registrati...
  • 84 篇 image enhancemen...
  • 79 篇 segmentation
  • 76 篇 image reconstruc...
  • 71 篇 medical image se...
  • 68 篇 computerized tom...
  • 66 篇 artificial intel...
  • 59 篇 image processing...
  • 54 篇 deformation
  • 52 篇 pattern recognit...
  • 49 篇 image classifica...
  • 48 篇 convolutional ne...
  • 46 篇 magnetic resonan...
  • 45 篇 semi-supervised ...
  • 42 篇 contrastive lear...
  • 41 篇 image analysis

机构

  • 31 篇 ucl ctr med imag...
  • 21 篇 queens univ sch ...
  • 21 篇 imperial coll lo...
  • 20 篇 shenzhen univ ma...
  • 19 篇 kings coll londo...
  • 19 篇 simon fraser uni...
  • 19 篇 shenzhen univ me...
  • 17 篇 ucl ctr med imag...
  • 17 篇 chinese univ hon...
  • 16 篇 tencent jarvis l...
  • 15 篇 centre for medic...
  • 15 篇 shanghai united ...
  • 15 篇 department of co...
  • 15 篇 univ n carolina ...
  • 14 篇 national center ...
  • 14 篇 shanghai jiao to...
  • 14 篇 harvard med sch ...
  • 13 篇 biomedical image...
  • 13 篇 univ penn dept r...
  • 13 篇 shanghaitech uni...

作者

  • 93 篇 rueckert daniel
  • 76 篇 navab nassir
  • 71 篇 shen dinggang
  • 50 篇 ourselin sebasti...
  • 48 篇 hamarneh ghassan
  • 44 篇 yang guang-zhong
  • 33 篇 zheng yefeng
  • 31 篇 ni dong
  • 29 篇 duncan james s.
  • 29 篇 zhou s. kevin
  • 28 篇 glocker ben
  • 26 篇 yang xin
  • 25 篇 comaniciu dorin
  • 25 篇 abugharbieh rafe...
  • 25 篇 zheng guoyan
  • 24 篇 yap pew-thian
  • 24 篇 fichtinger gabor
  • 23 篇 golland polina
  • 23 篇 abolmaesumi pura...
  • 22 篇 collins d. louis

语言

  • 4,057 篇 英文
  • 50 篇 其他
  • 8 篇 中文
检索条件"任意字段=3rd International Conference on Medical Image Computing and Computer-Assisted Intervention"
4110 条 记 录,以下是141-150 订阅
排序:
MedNeXt: Transformer-Driven Scaling of ConvNets for medical image Segmentation  26th
MedNeXt: Transformer-Driven Scaling of ConvNets for Medical ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Roy, Saikat Koehler, Gregor Ulrich, Constantin Baumgartner, Michael Petersen, Jens Isensee, Fabian Jaeger, Paul F. Maier-Hein, Klaus H. German Canc Res Ctr Div Med Image Comp MIC Heidelberg Germany Heidelberg Univ Hosp Dept Radiat Oncol Pattern Anal & Learning Grp Heidelberg Germany Heidelberg Univ Fac Math & Comp Sci Heidelberg Germany German Canc Res Ctr Helmholtz Imaging Heidelberg Germany NCT Heidelberg Natl Ctr Tumor Dis NCT Heidelberg Germany German Canc Res Ctr Interact Machine Learning Grp Heidelberg Germany
There has been exploding interest in embracing Transformer-based architectures for medical image segmentation. However, the lack of large-scale annotated medical datasets make achieving performances equivalent to thos... 详细信息
来源: 评论
Automated CT Lung Cancer Screening Workflow Using 3D Camera  26th
Automated CT Lung Cancer Screening Workflow Using 3D Camera
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Teixeira, Brian Singh, Vivek Tamersoy, Birgi Prokein, Andreas Kapoor, Ankur Siemens Healthineers Digital Technol & Innovat Princeton NJ 08540 USA Siemens Healthineers Digital Technol & Innovat Erlangen Germany Siemens Healthineers Comp Tomog Forchheim Germany
Despite recent developments in CT planning that enabled automation in patient positioning, time-consuming scout scans are still needed to compute dose profile and ensure the patient is properly positioned. In this pap... 详细信息
来源: 评论
COLosSAL: A Benchmark for Cold-Start Active Learning for 3D medical image Segmentation  26th
COLosSAL: A Benchmark for Cold-Start Active Learning for 3D ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Liu, Han Li, Hao Yao, Xing Fan, Yubo Hu, Dewei Dawant, Benoit M. Nath, Vishwesh Xu, Zhoubing Oguz, Ipek Vanderbilt Univ 221 Kirkland Hall Nashville TN 37235 USA NVIDIA Nashville TN USA Siemens Healthineers Princeton NJ USA
medical image segmentation is a critical task in medical image analysis. In recent years, deep learning based approaches have shown exceptional performance when trained on a fully-annotated dataset. However, data anno... 详细信息
来源: 评论
Concept Bottleneck with Visual Concept Filtering for Explainable medical image Classification  26th
Concept Bottleneck with Visual Concept Filtering for Explain...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Kim, Injae Kim, Jongha Choi, Joonmyung Kim, Hyunwoo J. Korea Univ Dept Comp Sci & Engn Seoul South Korea
Interpretability is a crucial factor in building reliable models for various medical applications. Concept Bottleneck Models (CBMs) enable interpretable image classification by utilizing human-understandable concepts ... 详细信息
来源: 评论
Anti-adversarial Consistency Regularization for Data Augmentation: Applications to Robust medical image Segmentation  26th
Anti-adversarial Consistency Regularization for Data Augment...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Cho, Hyuna Han, Yubin Kim, Won Hwa Pohang Univ Sci & Technol POSTECH Pohang South Korea
Modern deep learning methods for semantic segmentation require labor-intensive labeling for large-scale datasets with dense pixel-level annotations. Recent data augmentation methods such as dropping, mixing image patc... 详细信息
来源: 评论
Implicit Anatomical Rendering for medical image Segmentation with Stochastic Experts  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: You, Chenyu Dai, Weicheng Min, Yifei Staib, Lawrence Duncan, James S. Yale Univ Dept Elect Engn New Haven CT 06510 USA Yale Univ Dept Radiol & Biomed Imaging New Haven CT USA Yale Univ Dept Biomed Engn New Haven CT USA Yale Univ Dept Stat & Data Sci New Haven CT USA
Integrating high-level semantically correlated contents and low-level anatomical features is of central importance in medical image segmentation. Towards this end, recent deep learning-based medical segmentation metho... 详细信息
来源: 评论
Text-Guided Foundation Model Adaptation for Pathological image Classification  26th
Text-Guided Foundation Model Adaptation for Pathological Ima...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Zhang, Yunkun Gao, Jin Zhou, Mu Wang, Xiaosong Qiao, Yu Zhang, Shaoting Wang, Dequan Shanghai Jiao Tong Univ Shanghai Peoples R China Rutgers State Univ Newark NJ USA Shanghai AI Lab Shanghai Peoples R China
The recent surge of foundation models in computer vision and natural language processing opens up perspectives in utilizing multi-modal clinical data to train large models with strong generalizability. Yet pathologica... 详细信息
来源: 评论
FSDiffReg: Feature-Wise and Score-Wise Diffusion-Guided Unsupervised Deformable image Registration for Cardiac images  26th
FSDiffReg: Feature-Wise and Score-Wise Diffusion-Guided Unsu...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Qin, Yi Li, Xiaomeng Hong Kong Univ Sci & Technol Kowloon Hong Kong Peoples R China
Unsupervised deformable image registration is one of the challenging tasks in medical imaging. Obtaining a high-quality deformation field while preserving deformation topology remains demanding amid a series of deep-l... 详细信息
来源: 评论
Deep Unsupervised Clustering for Conditional Identification of Subgroups Within a Digital Pathology image Set  26th
Deep Unsupervised Clustering for Conditional Identification ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Sidulova, Mariia Sun, Xudong Gossmann, Alexej US FDA Ctr Devices & Radiol Hlth Silver Spring MD 20993 USA Helmholtz Munich Inst AI Hlth Munich Germany George Washington Univ Dept Biomed Engn Washington DC USA
Consideration of subgroups or domains within medical image datasets is crucial for the development and evaluation of robust and generalizable machine learning systems. To tackle the domain identification problem, we e... 详细信息
来源: 评论
HartleyMHA: Self-attention in Frequency Domain for Resolution-Robust and Parameter-Efficient 3D image Segmentation  26th
HartleyMHA: Self-attention in Frequency Domain for Resolutio...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wong, Ken C. L. Wang, Hongzhi Syeda-Mahmood, Tanveer IBM Res Almaden Res Ctr San Jose CA 95120 USA
With the introduction of Transformers, different attention-based models have been proposed for image segmentation with promising results. Although self-attention allows capturing of long-range dependencies, it suffers... 详细信息
来源: 评论