咨询与建议

限定检索结果

文献类型

  • 3,922 篇 会议
  • 108 篇 期刊文献
  • 80 册 图书

馆藏范围

  • 4,109 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,628 篇 工学
    • 3,283 篇 计算机科学与技术...
    • 1,893 篇 生物医学工程(可授...
    • 1,553 篇 软件工程
    • 992 篇 光学工程
    • 501 篇 生物工程
    • 379 篇 电气工程
    • 319 篇 电子科学与技术(可...
    • 269 篇 信息与通信工程
    • 201 篇 控制科学与工程
    • 157 篇 仪器科学与技术
    • 63 篇 核科学与技术
    • 45 篇 力学(可授工学、理...
    • 37 篇 安全科学与工程
    • 36 篇 化学工程与技术
    • 34 篇 机械工程
    • 28 篇 建筑学
  • 2,707 篇 医学
    • 1,923 篇 特种医学
    • 1,682 篇 临床医学
    • 666 篇 基础医学(可授医学...
    • 466 篇 药学(可授医学、理...
    • 322 篇 医学技术(可授医学...
    • 62 篇 公共卫生与预防医...
  • 1,105 篇 理学
    • 573 篇 生物学
    • 516 篇 物理学
    • 482 篇 数学
    • 143 篇 统计学(可授理学、...
    • 60 篇 化学
  • 141 篇 管理学
    • 94 篇 图书情报与档案管...
    • 50 篇 管理科学与工程(可...
  • 30 篇 教育学
    • 30 篇 教育学
  • 9 篇 农学
  • 7 篇 经济学
  • 6 篇 法学
  • 1 篇 军事学

主题

  • 334 篇 image segmentati...
  • 183 篇 magnetic resonan...
  • 181 篇 deep learning
  • 161 篇 medical imaging
  • 129 篇 image registrati...
  • 84 篇 image enhancemen...
  • 79 篇 segmentation
  • 76 篇 image reconstruc...
  • 71 篇 medical image se...
  • 68 篇 computerized tom...
  • 66 篇 artificial intel...
  • 59 篇 image processing...
  • 54 篇 deformation
  • 52 篇 pattern recognit...
  • 49 篇 image classifica...
  • 48 篇 convolutional ne...
  • 46 篇 magnetic resonan...
  • 45 篇 semi-supervised ...
  • 42 篇 contrastive lear...
  • 41 篇 image analysis

机构

  • 31 篇 ucl ctr med imag...
  • 21 篇 queens univ sch ...
  • 21 篇 imperial coll lo...
  • 20 篇 shenzhen univ ma...
  • 19 篇 kings coll londo...
  • 19 篇 simon fraser uni...
  • 19 篇 shenzhen univ me...
  • 17 篇 ucl ctr med imag...
  • 17 篇 chinese univ hon...
  • 16 篇 tencent jarvis l...
  • 15 篇 centre for medic...
  • 15 篇 shanghai united ...
  • 15 篇 department of co...
  • 15 篇 univ n carolina ...
  • 14 篇 national center ...
  • 14 篇 shanghai jiao to...
  • 14 篇 harvard med sch ...
  • 13 篇 biomedical image...
  • 13 篇 univ penn dept r...
  • 13 篇 shanghaitech uni...

作者

  • 93 篇 rueckert daniel
  • 76 篇 navab nassir
  • 71 篇 shen dinggang
  • 50 篇 ourselin sebasti...
  • 48 篇 hamarneh ghassan
  • 44 篇 yang guang-zhong
  • 33 篇 zheng yefeng
  • 31 篇 ni dong
  • 29 篇 duncan james s.
  • 29 篇 zhou s. kevin
  • 28 篇 glocker ben
  • 26 篇 yang xin
  • 25 篇 comaniciu dorin
  • 25 篇 abugharbieh rafe...
  • 25 篇 zheng guoyan
  • 24 篇 yap pew-thian
  • 24 篇 fichtinger gabor
  • 23 篇 golland polina
  • 23 篇 abolmaesumi pura...
  • 22 篇 collins d. louis

语言

  • 4,057 篇 英文
  • 50 篇 其他
  • 8 篇 中文
检索条件"任意字段=3rd International Conference on Medical Image Computing and Computer-Assisted Intervention"
4110 条 记 录,以下是151-160 订阅
排序:
S3M: Scalable Statistical Shape Modeling Through Unsupervised Correspondences  26th
S3M: Scalable Statistical Shape Modeling Through Unsupervise...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Bastian, Lennart Baumann, Alexander Hoppe, Emily Buergin, Vincent Kim, Ha Young Saleh, Mahdi Busam, Benjamin Navab, Nassir Tech Univ Munich Comp Aided Med Procedures Munich Germany
Statistical shape models (SSMs) are an established way to represent the anatomy of a population with various clinically relevant applications. However, they typically require domain expertise, and labor-intensive land... 详细信息
来源: 评论
Multi-scale Prototypical Transformer forWhole Slide image Classification  26th
Multi-scale Prototypical Transformer forWhole Slide Image Cl...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Ding, Saisai Wang, Jun Li, Juncheng Shi, Jun Shanghai Univ Sch Commun & Informat Engn Shanghai Peoples R China
Whole slide image (WSI) classification is an essential task in computational pathology. Despite the recent advances in multiple instance learning (MIL) for WSI classification, accurate classification of WSIs remains c... 详细信息
来源: 评论
Conditional Diffusion Models for Weakly Supervised medical image Segmentation  26th
Conditional Diffusion Models for Weakly Supervised Medical I...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Hu, Xinrong Chen, Yu-Jen Ho, Tsung-Yi Shi, Yiyu Univ Notre Dame Notre Dame IN 46556 USA Natl Tsing Hua Univ Hsinchu Taiwan Chinese Univ Hong Kong Shatin Hong Kong Peoples R China
Recent advances in denoising diffusion probabilistic models have shown great success in image synthesis tasks. While there are already works exploring the potential of this powerful tool in image semantic segmentation... 详细信息
来源: 评论
DHC: Dual-Debiased Heterogeneous Co-training Framework for Class-Imbalanced Semi-supervised medical image Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wang, Haonan Li, Xiaomeng Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China
The volume-wise labeling of 3D medical images is expertise-demanded and time-consuming;hence semi-supervised learning (SSL) is highly desirable for training with limited labeled data. Imbalanced class distribution is ... 详细信息
来源: 评论
NASDM: Nuclei-Aware Semantic Histopathology image Generation Using Diffusion Models  26th
NASDM: Nuclei-Aware Semantic Histopathology Image Generation...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Shrivastava, Aman Fletcher, P. Thomas Univ Virginia Charlottesville VA 22903 USA
In recent years, computational pathology has seen tremendous progress driven by deep learning methods in segmentation and classification tasks aiding prognostic and diagnostic settings. Nuclei segmentation, for instan... 详细信息
来源: 评论
11th Workshop on Clinical image-Based Procedures, CLIP 2022, held in conjunction with the 25th international conference on medical image computing and computer assisted intervention, MICCAI 2022
11th Workshop on Clinical Image-Based Procedures, CLIP 2022,...
收藏 引用
11th Workshop on Clinical image-Based Procedures, CLIP 2022, held in conjunction with the 25th international conference on medical image computing and computer assisted intervention, MICCAI 2022
The proceedings contain 9 papers. The special focus in this conference is on Clinical image-Based Procedures. The topics include: Machine Learning Based Approach for Motion Detection and Estimation in R...
来源: 评论
Semi-supervised Domain Adaptive medical image Segmentation Through Consistency Regularized Disentangled Contrastive Learning  26th
Semi-supervised Domain Adaptive Medical Image Segmentation T...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Basak, Hritam Yin, Zhaozheng SUNY Stony Brook Dept Comp Sci Stony Brook NY 11794 USA
Although unsupervised domain adaptation (UDA) is a promising direction to alleviate domain shift, they fall short of their supervised counterparts. In this work, we investigate relatively less explored semi-supervised... 详细信息
来源: 评论
SplitFed Resilience to Packet Loss: Where to Split, that is the Question  26th
SplitFed Resilience to Packet Loss: Where to Split, that is ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Shiranthika, Chamani Kafshgari, Zahra Hafezi Saeedi, Parvaneh Bajic, Ivan V. Simon Fraser Univ Sch Engn Sci Burnaby BC Canada
Decentralized machine learning has broadened its scope recently with the invention of Federated Learning (FL), Split Learning (SL), and their hybrids like Split Federated Learning (SplitFed or SFL). The goal of SFL is... 详细信息
来源: 评论
A2FSeg: Adaptive Multi-modal Fusion Network for medical image Segmentation  26th
A2FSeg: Adaptive Multi-modal Fusion Network for Medical Imag...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wang, Zirui Hong, Yi Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai 200240 Peoples R China
Magnetic Resonance Imaging (MRI) plays an important role in multi-modal brain tumor segmentation. However, missing modality is very common in clinical diagnosis, which will lead to severe segmentation performance degr... 详细信息
来源: 评论
An Ensemble of Machine Learning Models Utilizing Deep Convolutional Features for medical image Classification  3rd
An Ensemble of Machine Learning Models Utilizing Deep Convol...
收藏 引用
3rd international conference on Advanced Network Technologies and Intelligent computing (ANTIC)
作者: Jana, Nanda Dulal Dhar, Sandipan Ghosh, Subhayu Phukan, Sukonya Gogoi, Rajlakshmi Singh, Jyoti Natl Inst Technol Durgapur Durgapur 713209 India Jorhat Engn Coll Jorhat 785007 Assam India
medical image classification is a rapidly growing research field that has revolutionised various diseases' traditional diagnosis, treatment planning, and prognosis prediction. Due to the recent advancements in dee... 详细信息
来源: 评论