咨询与建议

限定检索结果

文献类型

  • 3,921 篇 会议
  • 108 篇 期刊文献
  • 80 册 图书

馆藏范围

  • 4,108 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,623 篇 工学
    • 3,275 篇 计算机科学与技术...
    • 1,893 篇 生物医学工程(可授...
    • 1,554 篇 软件工程
    • 995 篇 光学工程
    • 501 篇 生物工程
    • 370 篇 电气工程
    • 319 篇 电子科学与技术(可...
    • 260 篇 信息与通信工程
    • 201 篇 控制科学与工程
    • 157 篇 仪器科学与技术
    • 63 篇 核科学与技术
    • 45 篇 力学(可授工学、理...
    • 37 篇 安全科学与工程
    • 36 篇 化学工程与技术
    • 34 篇 机械工程
    • 28 篇 建筑学
  • 2,707 篇 医学
    • 1,923 篇 特种医学
    • 1,682 篇 临床医学
    • 666 篇 基础医学(可授医学...
    • 466 篇 药学(可授医学、理...
    • 322 篇 医学技术(可授医学...
    • 62 篇 公共卫生与预防医...
  • 1,097 篇 理学
    • 573 篇 生物学
    • 517 篇 物理学
    • 473 篇 数学
    • 143 篇 统计学(可授理学、...
    • 60 篇 化学
  • 147 篇 管理学
    • 95 篇 图书情报与档案管...
    • 56 篇 管理科学与工程(可...
  • 30 篇 教育学
    • 30 篇 教育学
  • 9 篇 农学
  • 7 篇 经济学
  • 6 篇 法学
  • 1 篇 军事学

主题

  • 334 篇 image segmentati...
  • 183 篇 magnetic resonan...
  • 182 篇 deep learning
  • 161 篇 medical imaging
  • 129 篇 image registrati...
  • 84 篇 image enhancemen...
  • 79 篇 segmentation
  • 76 篇 image reconstruc...
  • 71 篇 medical image se...
  • 68 篇 computerized tom...
  • 65 篇 artificial intel...
  • 59 篇 image processing...
  • 54 篇 deformation
  • 52 篇 pattern recognit...
  • 48 篇 image classifica...
  • 48 篇 convolutional ne...
  • 46 篇 magnetic resonan...
  • 45 篇 semi-supervised ...
  • 42 篇 contrastive lear...
  • 41 篇 image analysis

机构

  • 31 篇 ucl ctr med imag...
  • 21 篇 queens univ sch ...
  • 21 篇 imperial coll lo...
  • 20 篇 shenzhen univ ma...
  • 19 篇 kings coll londo...
  • 19 篇 simon fraser uni...
  • 19 篇 shenzhen univ me...
  • 17 篇 ucl ctr med imag...
  • 17 篇 chinese univ hon...
  • 16 篇 tencent jarvis l...
  • 15 篇 centre for medic...
  • 15 篇 shanghai united ...
  • 15 篇 department of co...
  • 15 篇 univ n carolina ...
  • 14 篇 national center ...
  • 14 篇 shanghai jiao to...
  • 14 篇 harvard med sch ...
  • 13 篇 biomedical image...
  • 13 篇 univ penn dept r...
  • 13 篇 shanghaitech uni...

作者

  • 93 篇 rueckert daniel
  • 76 篇 navab nassir
  • 71 篇 shen dinggang
  • 50 篇 ourselin sebasti...
  • 48 篇 hamarneh ghassan
  • 44 篇 yang guang-zhong
  • 33 篇 zheng yefeng
  • 31 篇 ni dong
  • 29 篇 duncan james s.
  • 29 篇 zhou s. kevin
  • 28 篇 glocker ben
  • 26 篇 yang xin
  • 25 篇 comaniciu dorin
  • 25 篇 abugharbieh rafe...
  • 25 篇 zheng guoyan
  • 24 篇 yap pew-thian
  • 24 篇 fichtinger gabor
  • 23 篇 golland polina
  • 23 篇 abolmaesumi pura...
  • 22 篇 collins d. louis

语言

  • 4,064 篇 英文
  • 42 篇 其他
  • 8 篇 中文
检索条件"任意字段=3rd International Conference on Medical Image Computing and Computer-Assisted Intervention"
4109 条 记 录,以下是191-200 订阅
排序:
Segmentation Distortion: Quantifying Segmentation Uncertainty Under Domain Shift via the Effects of Anomalous Activations  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lennartz, Jonathan Schultz, Thomas Univ Bonn Bonn Germany Lamarr Inst Machine Learning & Artificial Intelli Bonn Germany
Domain shift occurs when training U-Nets for medical image segmentation with images from one device, but applying them to images from a different device. This often reduces accuracy, and it poses a challenge for uncer... 详细信息
来源: 评论
FedIIC: Towards Robust Federated Learning for Class-Imbalanced medical image Classification  26th
FedIIC: Towards Robust Federated Learning for Class-Imbalanc...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wu, Nannan Yu, Li Yang, Xin Cheng, Kwang-Ting Yan, Zengqiang Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan Peoples R China Hong Kong Univ Sci & Technol Sch Engn Hong Kong Peoples R China
Federated learning (FL), training deep models from decentralized data without privacy leakage, has shown great potential in medical image computing recently. However, considering the ubiquitous class imbalance in medi... 详细信息
来源: 评论
Histopathological image Analysis with Style-Augmented Feature Domain Mixing for Improved Generalization  26th
Histopathological Image Analysis with Style-Augmented Featur...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Khamankar, Vaibhav Bera, Sutanu Bhattacharya, Saumik Sen, Debashis Biswas, Prabir Kumar Indian Inst Technol Kharagpur Dept Elect & Elect Commun Engn Kharagpur India
Histopathological images are essential for medical diagnosis and treatment planning, but interpreting them accurately using machine learning can be challenging due to variations in tissue preparation, staining and ima... 详细信息
来源: 评论
Contrastive Masked image-Text Modeling for medical Visual Representation Learning  26th
Contrastive Masked Image-Text Modeling for Medical Visual Re...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chen, Cheng Zhong, Aoxiao Wu, Dufan Luo, Jie Li, Quanzheng Massachusetts Gen Hosp Ctr Adv Med Comp & Anal Boston MA 02114 USA Harvard Med Sch Boston MA 02115 USA Harvard Univ Sch Engn & Appl Sci Boston MA 02115 USA Massachusetts Gen Brigham Data Sci Off Boston MA USA
Self-supervised learning (SSL) of visual representations from paired medical images and text reports has recently shown great promise for various downstream tasks. However, previous work has focused on investigating t... 详细信息
来源: 评论
Towards AI-Driven Radiology Education: A Self-supervised Segmentation-Based Framework for High-Precision medical image Editing  26th
Towards AI-Driven Radiology Education: A Self-supervised Seg...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Kobayashi, Kazuma Gu, Lin Hataya, Ryuichiro Miyake, Mototaka Takamizawa, Yasuyuki Ito, Sono Watanabe, Hirokazu Yoshida, Yukihiro Yoshimura, Hiroki Harada, Tatsuya Hamamoto, Ryuji Natl Canc Ctr Tokyo Japan RIKEN Ctr Adv Intelligence Project Tokyo Japan Univ Tokyo Tokyo Japan RIKEN Informat R&D & Strategy Headquarters Tokyo Japan Natl Canc Ctr Tokyo Japan Hiroshima Univ Sch Med Hiroshima Japan
medical education is essential for providing the best patient care in medicine, but creating educational materials using real-world data poses many challenges. For example, the diagnosis and treatment of a disease can... 详细信息
来源: 评论
Explainable AI-based Detection and Interpretation of Abnormalities in Chest X-rays  3
Explainable AI-based Detection and Interpretation of Abnorma...
收藏 引用
3rd international conference on Intelligent Systems, Advanced computing, and Communication, ISACC 2025
作者: Muthukumar, Sai Smrithi Gandham, Bhavika Vijayekkumaran, Trisha Jyotsna, C. Aiswariya Milan, K. Amrita School of Computing Dept. of Computer Science and Engineering Bengaluru India
Chest X-ray images are widely used in diagnosing medical conditions, however, due to radiologist fatigue and shortage of resources the possibility of spotting peculiarities increases. This work proposes an explainable... 详细信息
来源: 评论
MDViT: Multi-domain Vision Transformer for Small medical image Segmentation Datasets  26th
MDViT: Multi-domain Vision Transformer for Small Medical Ima...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Du, Siyi Bayasi, Nourhan Hamarneh, Ghassan Garbi, Rafeef Univ British Columbia Vancouver BC Canada Simon Fraser Univ Burnaby BC Canada
Despite its clinical utility, medical image segmentation (MIS) remains a daunting task due to images' inherent complexity and variability. Vision transformers (ViTs) have recently emerged as a promising solution t... 详细信息
来源: 评论
Decoupled Consistency for Semi-supervised medical image Segmentation  26th
Decoupled Consistency for Semi-supervised Medical Image Segm...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chen, Faquan Fei, Jingjing Chen, Yaqi Huang, Chenxi Xiamen Univ Schoor Informat Xiamen Peoples R China SenseTime Res Shanghai Peoples R China
By fully utilizing unlabeled data, the semi-supervised learning (SSL) technique has recently produced promising results in the segmentation of medical images. Pseudo labeling and consistency regularization are two eff... 详细信息
来源: 评论
Analysis of Lung Cells with a Novel Segmentation Methodology Using FCN and Deeplab V3  3
Analysis of Lung Cells with a Novel Segmentation Methodology...
收藏 引用
3rd IEEE international conference on Distributed computing and Electrical Circuits and Electronics, ICDCECE 2024
作者: Ramya, J. Poongodi, A. Vels Institute Of Science Technology And Advanced Studies Department Of Computer Sciences Chennai India
One of the primary causes of death globally, cancer is estimated to have affected more people in less developed nations than in more developed ones throughout time in terms of both cases and mortality. The unchecked g... 详细信息
来源: 评论
M-GenSeg: Domain Adaptation for Target Modality Tumor Segmentation with Annotation-Efficient Supervision  26th
M-GenSeg: Domain Adaptation for Target Modality Tumor Segmen...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Alefsen, Malo Vorontsov, Eugene Kadoury, Samuel Ecole Polytech Montreal Montreal PQ Canada CHUM Ctr Rech Montreal PQ Canada Paige Montreal PQ Canada
Automated medical image segmentation using deep neural networks typically requires substantial supervised training. However, these models fail to generalize well across different imaging modalities. This shortcoming, ... 详细信息
来源: 评论