咨询与建议

限定检索结果

文献类型

  • 3,922 篇 会议
  • 108 篇 期刊文献
  • 80 册 图书

馆藏范围

  • 4,109 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 3,628 篇 工学
    • 3,283 篇 计算机科学与技术...
    • 1,893 篇 生物医学工程(可授...
    • 1,553 篇 软件工程
    • 992 篇 光学工程
    • 501 篇 生物工程
    • 379 篇 电气工程
    • 319 篇 电子科学与技术(可...
    • 269 篇 信息与通信工程
    • 201 篇 控制科学与工程
    • 157 篇 仪器科学与技术
    • 63 篇 核科学与技术
    • 45 篇 力学(可授工学、理...
    • 37 篇 安全科学与工程
    • 36 篇 化学工程与技术
    • 34 篇 机械工程
    • 28 篇 建筑学
  • 2,707 篇 医学
    • 1,923 篇 特种医学
    • 1,682 篇 临床医学
    • 666 篇 基础医学(可授医学...
    • 466 篇 药学(可授医学、理...
    • 322 篇 医学技术(可授医学...
    • 62 篇 公共卫生与预防医...
  • 1,105 篇 理学
    • 573 篇 生物学
    • 516 篇 物理学
    • 482 篇 数学
    • 143 篇 统计学(可授理学、...
    • 60 篇 化学
  • 141 篇 管理学
    • 94 篇 图书情报与档案管...
    • 50 篇 管理科学与工程(可...
  • 30 篇 教育学
    • 30 篇 教育学
  • 9 篇 农学
  • 7 篇 经济学
  • 6 篇 法学
  • 1 篇 军事学

主题

  • 334 篇 image segmentati...
  • 183 篇 magnetic resonan...
  • 181 篇 deep learning
  • 161 篇 medical imaging
  • 129 篇 image registrati...
  • 84 篇 image enhancemen...
  • 79 篇 segmentation
  • 76 篇 image reconstruc...
  • 71 篇 medical image se...
  • 68 篇 computerized tom...
  • 66 篇 artificial intel...
  • 59 篇 image processing...
  • 54 篇 deformation
  • 52 篇 pattern recognit...
  • 49 篇 image classifica...
  • 48 篇 convolutional ne...
  • 46 篇 magnetic resonan...
  • 45 篇 semi-supervised ...
  • 42 篇 contrastive lear...
  • 41 篇 image analysis

机构

  • 31 篇 ucl ctr med imag...
  • 21 篇 queens univ sch ...
  • 21 篇 imperial coll lo...
  • 20 篇 shenzhen univ ma...
  • 19 篇 kings coll londo...
  • 19 篇 simon fraser uni...
  • 19 篇 shenzhen univ me...
  • 17 篇 ucl ctr med imag...
  • 17 篇 chinese univ hon...
  • 16 篇 tencent jarvis l...
  • 15 篇 centre for medic...
  • 15 篇 shanghai united ...
  • 15 篇 department of co...
  • 15 篇 univ n carolina ...
  • 14 篇 national center ...
  • 14 篇 shanghai jiao to...
  • 14 篇 harvard med sch ...
  • 13 篇 biomedical image...
  • 13 篇 univ penn dept r...
  • 13 篇 shanghaitech uni...

作者

  • 93 篇 rueckert daniel
  • 76 篇 navab nassir
  • 71 篇 shen dinggang
  • 50 篇 ourselin sebasti...
  • 48 篇 hamarneh ghassan
  • 44 篇 yang guang-zhong
  • 33 篇 zheng yefeng
  • 31 篇 ni dong
  • 29 篇 duncan james s.
  • 29 篇 zhou s. kevin
  • 28 篇 glocker ben
  • 26 篇 yang xin
  • 25 篇 comaniciu dorin
  • 25 篇 abugharbieh rafe...
  • 25 篇 zheng guoyan
  • 24 篇 yap pew-thian
  • 24 篇 fichtinger gabor
  • 23 篇 golland polina
  • 23 篇 abolmaesumi pura...
  • 22 篇 collins d. louis

语言

  • 4,057 篇 英文
  • 50 篇 其他
  • 8 篇 中文
检索条件"任意字段=3rd International Conference on Medical Image Computing and Computer-Assisted Intervention"
4110 条 记 录,以下是71-80 订阅
排序:
9th international Workshop on Perinatal, Preterm and Paediatric image Analysis, PIPPI 2024, held in Conjunction with the 27th international conference on medical image computing and computer-assisted intervention, MICCAI 2024
9th International Workshop on Perinatal, Preterm and Paediat...
收藏 引用
9th international Workshop on Perinatal, Preterm and Paediatric image Analysis, PIPPI 2024, held in Conjunction with the 27th international conference on medical image computing and computer-assisted intervention, MICCAI 2024
The proceedings contain 14 papers. The special focus in this conference is on Perinatal, Preterm and Paediatric image Analysis. The topics include: Automatic Disentanglement of Motion in Fetal Low Field MRI ...
来源: 评论
13th international Workshop on Clinical image-based Procedures: Towards Holistic Patient Models for Personalized Healthcare, CLIP 2024 held in conjunction with the international conference on medical image computing and computer assisted intervention, MICCAI 2024
13th International Workshop on Clinical Image-based Procedur...
收藏 引用
13th international Workshop on Clinical image-based Procedures: Towards Holistic Patient Models for Personalized Healthcare, CLIP 2024 held in conjunction with the international conference on medical image computing and computer assisted intervention, MICCAI 2024
The proceedings contain 9 papers. The special focus in this conference is on Clinical image-based Procedures: Towards Holistic Patient Models for Personalized Healthcare. The topics include: Automated Multi-View Plann...
来源: 评论
Diffusion Transformer U-Net for medical image Segmentation  26th
Diffusion Transformer U-Net for Medical Image Segmentation
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chowdary, G. Jignesh Yin, Zhaozheng SUNY Stony Brook Stony Brook NY 11794 USA
Diffusion model has shown its power on various generation tasks. When applying the diffusion model in medical image segmentation, there are a few roadblocks to remove: the semantic features required for the conditioni... 详细信息
来源: 评论
Operating Critical Machine Learning Models in Resource Constrained Regimes  26th
Operating Critical Machine Learning Models in Resource Const...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Selvan, Raghavendra Schon, Julian Dam, Erik B. Univ Copenhagen Dept Comp Sci Copenhagen Denmark Univ Copenhagen Dept Neurosci Copenhagen Denmark
The accelerated development of machine learning methods, primarily deep learning, are causal to the recent breakthroughs in medical image analysis and computer aided intervention. The resource consumption of deep lear... 详细信息
来源: 评论
Regular SE(3) Group Convolutions for Volumetric medical image Analysis  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Kuipers, Thijs P. Bekkers, Erik J. Univ Amsterdam Inst Informat Amsterdam Machine Learning Lab Amsterdam Netherlands
Regular group convolutional neural networks (G-CNNs) have been shown to increase model performance and improve equivariance to different geometrical symmetries. This work addresses the problem of SE(3), i.e., roto-tra... 详细信息
来源: 评论
Annotator Consensus Prediction for medical image Segmentation with Diffusion Models  26th
Annotator Consensus Prediction for Medical Image Segmentatio...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Amit, Tomer Shichrur, Shmuel Shaharabany, Tal Wolf, Lior Tel Aviv Univ Tel Aviv Israel
A major challenge in the segmentation of medical images is the large inter- and intra-observer variability in annotations provided by multiple experts. To address this challenge, we propose a novel method for multi-ex... 详细信息
来源: 评论
Memory Replay for Continual medical image Segmentation Through Atypical Sample Selection  26th
Memory Replay for Continual Medical Image Segmentation Throu...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Bera, Sutanu Ummadi, Vinay Sen, Debashis Mandal, Subhamoy Biswas, Prabir Kumar Indian Inst Technol Kharagpur Kharagpur W Bengal India
medical image segmentation is critical for accurate diagnosis, treatment planning and disease monitoring. Existing deep learning-based segmentation models can suffer from catastrophic forgetting, especially when faced... 详细信息
来源: 评论
PIPNet3D: Interpretable Detection of Alzheimer in MRI Scans  9th
PIPNet3D: Interpretable Detection of Alzheimer in MRI Scans
收藏 引用
27th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: De Santi, Lisa Anita Schlotterer, Jorg Scheschenja, Michael Wessendorf, Joel Nauta, Meike Positano, Vincenzo Seifert, Christin Univ Pisa Pisa Italy Univ Marburg Marburg Germany Univ Mannheim Mannheim Germany Univ Hosp Marburg Dept Diagnost & Intervent Radiol Marburg Germany Datacation Eindhoven Netherlands Fdn Toscana G Monasterio Pisa Italy
Information from neuroimaging examinations is increasingly used to support diagnoses of dementia, e.g., Alzheimer's disease. While current clinical practice is mainly based on visual inspection and feature enginee... 详细信息
来源: 评论
A Federated Learning-Friendly Approach for Parameter-Efficient Fine-Tuning of SAM in 3D Segmentation  9th
A Federated Learning-Friendly Approach for Parameter-Efficie...
收藏 引用
27th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Asokan, Mothilal Benjamin, Joseph Geo Yaqub, Mohammad Nandakumar, Karthik Mohamed bin Zayed Univ Artificial Intelligence MB Abu Dhabi U Arab Emirates
Adapting foundation models for medical image analysis requires finetuning them on a considerable amount of data because of extreme distribution shifts between natural (source) data used for pre-training and medical (t... 详细信息
来源: 评论
Quantifying the Impact of Population Shift Across Age and Sex for Abdominal Organ Segmentation  2nd
Quantifying the Impact of Population Shift Across Age and...
收藏 引用
2nd international Workshop on Fairness of AI in medical Imaging, FAIMI 2024, and 3rd international Workshop on Ethical and Philosophical Issues in medical Imaging, EPIMI 2024, Held in Conjunction with the international conference on medical image computing and computer assisted interventions, MICCAI 2024
作者: Čevora, Kate Glocker, Ben Bai, Wenjia Department of Computing Imperial College London London United Kingdom Department of Brain Sciences Imperial College London London United Kingdom Data Science Institute Imperial College London London United Kingdom
Deep learning-based medical image segmentation has seen tremendous progress over the last decade, but there is still relatively little transfer into clinical practice. One of the main barriers is the challenge of doma... 详细信息
来源: 评论