咨询与建议

限定检索结果

文献类型

  • 36 篇 会议
  • 2 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 39 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 34 篇 工学
    • 30 篇 计算机科学与技术...
    • 20 篇 软件工程
    • 6 篇 信息与通信工程
    • 2 篇 动力工程及工程热...
    • 2 篇 建筑学
    • 2 篇 生物工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
    • 1 篇 水利工程
    • 1 篇 测绘科学与技术
    • 1 篇 交通运输工程
    • 1 篇 农业工程
    • 1 篇 生物医学工程(可授...
  • 18 篇 理学
    • 17 篇 数学
    • 5 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 生物学
    • 1 篇 化学
    • 1 篇 系统科学
  • 7 篇 医学
    • 7 篇 临床医学
  • 6 篇 管理学
    • 6 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 3 篇 pattern recognit...
  • 3 篇 artificial intel...
  • 2 篇 support vector m...
  • 2 篇 pattern matching
  • 2 篇 graphic methods
  • 2 篇 graph neural net...
  • 2 篇 clustering algor...
  • 1 篇 internet of thin...
  • 1 篇 image fusion
  • 1 篇 aggregates
  • 1 篇 binding energy
  • 1 篇 database filteri...
  • 1 篇 computational co...
  • 1 篇 magnetic resonan...
  • 1 篇 trees (mathemati...
  • 1 篇 image segmentati...
  • 1 篇 algorithms
  • 1 篇 subgraph isomorp...
  • 1 篇 computer graphic...
  • 1 篇 region-adjacency...

机构

  • 4 篇 univ bern dept c...
  • 2 篇 institute of com...
  • 2 篇 univ ca foscari ...
  • 1 篇 dipartimento di ...
  • 1 篇 research group a...
  • 1 篇 institute for in...
  • 1 篇 normandie univ e...
  • 1 篇 universitat poli...
  • 1 篇 department of in...
  • 1 篇 dipartimento di ...
  • 1 篇 ben gurion univ ...
  • 1 篇 faculty of mathe...
  • 1 篇 université de ly...
  • 1 篇 cnrs umr5516 f-4...
  • 1 篇 dipartimento di ...
  • 1 篇 pattern recognit...
  • 1 篇 univ sherbrooke ...
  • 1 篇 university of to...
  • 1 篇 school of artifi...
  • 1 篇 department of al...

作者

  • 4 篇 bunke h
  • 3 篇 hancock edwin r.
  • 3 篇 kropatsch walter...
  • 2 篇 jiang xiaoyi
  • 2 篇 glantz r
  • 2 篇 riesen kaspar
  • 2 篇 pelillo m
  • 2 篇 brun luc
  • 1 篇 solnon christine
  • 1 篇 kiouche abd erra...
  • 1 篇 glantz roland
  • 1 篇 ferrer miquel
  • 1 篇 e cruz rafael me...
  • 1 篇 haxhimusa yll
  • 1 篇 behanova andrea
  • 1 篇 foggia pasquale
  • 1 篇 fischer s
  • 1 篇 guidobaldi c.
  • 1 篇 rossi luca
  • 1 篇 laurent christop...

语言

  • 39 篇 英文
检索条件"任意字段=4th IAPR International Workshop on Graph Based Representations in Pattern Recognition, GbRPR 2003"
39 条 记 录,以下是21-30 订阅
排序:
graph-based vs. Vector-based Classification: A Fair Comparison  13th
Graph-Based vs. Vector-Based Classification: A Fair Comparis...
收藏 引用
13th iapr-TC-15 international workshop on graph-based representations in pattern recognition, gbrpr 2023
作者: Gillioz, Anthony Riesen, Kaspar Institute of Computer Science University of Bern Bern Switzerland Institute for Information Systems University of Applied Science and Arts Northwestern Switzerland Olten Switzerland
Numerous graph classifiers are readily available and frequently used in both research and industry. Ensuring their performance across multiple domains and applications is crucial. In this paper, we conduct a comprehen... 详细信息
来源: 评论
4th international workshop on Energy Minimization Methods in Computer Vision and pattern recognition, EMMCVPR 2003
4th International Workshop on Energy Minimization Methods in...
收藏 引用
4th international workshop on Energy Minimization Methods in Computer Vision and pattern recognition, EMMCVPR 2003
the proceedings contain 39 papers. the special focus in this conference is on Unsupervised Learning, Matching, Probabilistic Modelling, Segmentation, Grouping, Shape Modelling and Reconstruction. the topics include: S...
来源: 评论
An Efficient Entropy-based graph Kernel  13th
An Efficient Entropy-Based Graph Kernel
收藏 引用
13th iapr-TC-15 international workshop on graph-based representations in pattern recognition, gbrpr 2023
作者: Ourdjini, Aymen Kiouche, Abd Errahmane Seba, Hamida Alger Oued Smar Algeria Université de Lyon Université Lyon 1 LIRIS UMR 5205 Lyon69622 France
graph kernels are methods used in machine learning algorithms for handling graph-structured data. they are widely used for graph classification in various domains and are particularly valued for their accuracy. Howeve... 详细信息
来源: 评论
Quadratic Kernel Learning for Interpolation Kernel Machine based graph Classification  13th
Quadratic Kernel Learning for Interpolation Kernel Machine ...
收藏 引用
13th iapr-TC-15 international workshop on graph-based representations in pattern recognition, gbrpr 2023
作者: Zhang, Jiaqi Liu, Cheng-Lin Jiang, Xiaoyi Faculty of Mathematics and Computer Science University of Münster Einsteinstrasse 62 Münster48149 Germany National Laboratory of Pattern Recognition Institute of Automation of Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing10049 China
Interpolating classifiers interpolate all the training data and thus have zero training error. Recent research shows their fundamental importance for high-performance ensemble techniques. Interpolation kernel machines... 详细信息
来源: 评论
Swap strategies for graph matching
Swap strategies for graph matching
收藏 引用
4th international workshop on graph based representations in pattern recognition
作者: Fosser, P Glantz, R Locatelli, M Pelillo, M Univ Ca Foscari Venezia Dipartimento Informat I-30172 Venice Italy Univ Turin Dipartimento Informat I-10149 Turin Italy
the problem of graph matching is usually approached via explicit search in state-space or via energy minimization. In this paper we deal with a class of heuristics coming from a combination of both approaches. Combina... 详细信息
来源: 评论
Comparison of distance measures for graph-based clustering of documents
Comparison of distance measures for graph-based clustering o...
收藏 引用
4th international workshop on graph based representations in pattern recognition
作者: Schenker, A Last, M Bunke, H Kandel, A Univ S Florida Dept Comp Sci & Engn Tampa FL 33620 USA Ben Gurion Univ Negev Dept Informat Syst Engn IL-84105 Beer Sheva Israel Univ Bern Dept Comp Sci CH-3012 Bern Switzerland
In this paper we describe work relating to clustering of document collections. We compare the conventional vector-model approach using cosine similarity and Euclidean distance to a novel method we have developed for c... 详细信息
来源: 评论
Splitting Structural and Semantic Knowledge in graph Autoencoders for graph Regression  13th
Splitting Structural and Semantic Knowledge in Graph Autoe...
收藏 引用
13th iapr-TC-15 international workshop on graph-based representations in pattern recognition, gbrpr 2023
作者: Fadlallah, Sarah Segura Alabart, Natália Julià, Carme Serratosa, Francesc Research Group ASCLEPIUS: Smart Technology for Smart Healthcare Department D’Enginyeria Informática I Matemátiques Universitat Rovira I Virgili Catalonia Tarragona43k007 Spain
this paper introduces ReGengraph, a new method for graph regression that combines two well-known modules: an autoencoder and a graph autoencoder. the main objective of our proposal is to split the knowledge in the gra... 详细信息
来源: 评论
graph-based analysis of nasopharyngeal carcinoma with bayesian network learning methods
Graph-based analysis of nasopharyngeal carcinoma with bayesi...
收藏 引用
7th iapr-TC-15 international workshop on graph-based representations in pattern recognition, gbrpr 2009
作者: Aussem, Alex Rodrigues De Morais, Sergio Corbex, Marilys Favrel, Joël University of Lyon LIESP Université de Lyon 1 Villeurbanne F-69622 France 150 cours Albert Thomas Lyon Cedex 08 F-69280 France
In this paper, we propose a new graphical framework for extracting the relevant dietary, social and environmental risk factors that are associated with an increased risk of Nasopharyngeal Carcinoma (NPC) based on a ca... 详细信息
来源: 评论
Maximal Independent Sets for Pooling in graph Neural Networks  13th
Maximal Independent Sets for Pooling in Graph Neural Netwo...
收藏 引用
13th iapr-TC-15 international workshop on graph-based representations in pattern recognition, gbrpr 2023
作者: Stanovic, Stevan Gaüzère, Benoit Brun, Luc Normandie Univ ENSICAEN CNRS UNICAEN GREYC UMR 6072 Caen14000 France INSA Rouen Normandie Univ Rouen Normandie Université Le Havre Normandie Normandie Univ LITIS UR 4108 Rouen76000 France
Convolutional Neural Networks (CNNs) have enabled major advances in image classification through convolution and pooling. In particular, image pooling transforms a connected discrete lattice into a reduced lattice wit... 详细信息
来源: 评论
Minimum Spanning Set Selection in graph Kernels  13th
Minimum Spanning Set Selection in Graph Kernels
收藏 引用
13th iapr-TC-15 international workshop on graph-based representations in pattern recognition, gbrpr 2023
作者: Tortorella, Domenico Micheli, Alessio Department of Computer Science University of Pisa Largo B. Pontecorvo 3 Pisa56127 Italy
Kernel-based learning models such as support vector machines (SVMs) can seamlessly deal with graph structures thanks to suitable kernel functions that compute a particular similarity between pairs of data samples. In ... 详细信息
来源: 评论