咨询与建议

限定检索结果

文献类型

  • 3,126 篇 会议
  • 171 册 图书
  • 28 篇 期刊文献

馆藏范围

  • 3,324 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,238 篇 工学
    • 2,036 篇 计算机科学与技术...
    • 1,085 篇 软件工程
    • 401 篇 信息与通信工程
    • 357 篇 电气工程
    • 249 篇 生物工程
    • 168 篇 控制科学与工程
    • 157 篇 生物医学工程(可授...
    • 73 篇 光学工程
    • 72 篇 化学工程与技术
    • 67 篇 机械工程
    • 63 篇 仪器科学与技术
    • 59 篇 电子科学与技术(可...
    • 58 篇 安全科学与工程
    • 47 篇 交通运输工程
    • 38 篇 材料科学与工程(可...
    • 37 篇 动力工程及工程热...
  • 717 篇 理学
    • 377 篇 数学
    • 273 篇 生物学
    • 168 篇 物理学
    • 147 篇 统计学(可授理学、...
    • 104 篇 系统科学
    • 70 篇 化学
  • 459 篇 管理学
    • 298 篇 图书情报与档案管...
    • 199 篇 管理科学与工程(可...
    • 95 篇 工商管理
  • 300 篇 医学
    • 273 篇 临床医学
    • 125 篇 基础医学(可授医学...
    • 70 篇 药学(可授医学、理...
    • 53 篇 公共卫生与预防医...
  • 64 篇 法学
    • 57 篇 社会学
  • 32 篇 经济学
  • 31 篇 教育学
  • 28 篇 农学
  • 6 篇 艺术学
  • 3 篇 军事学
  • 1 篇 文学

主题

  • 545 篇 data mining
  • 539 篇 machine learning
  • 286 篇 pattern recognit...
  • 238 篇 deep learning
  • 188 篇 feature extracti...
  • 160 篇 support vector m...
  • 156 篇 artificial intel...
  • 118 篇 accuracy
  • 118 篇 training
  • 115 篇 machine learning...
  • 93 篇 data models
  • 91 篇 data mining and ...
  • 75 篇 classification
  • 72 篇 neural networks
  • 70 篇 convolutional ne...
  • 68 篇 predictive model...
  • 67 篇 big data
  • 63 篇 computational mo...
  • 57 篇 sentiment analys...
  • 55 篇 learning systems

机构

  • 10 篇 chinese academy ...
  • 9 篇 chitkara centre ...
  • 8 篇 zhejiang univers...
  • 7 篇 guangdong univer...
  • 7 篇 centre of resear...
  • 6 篇 central south un...
  • 6 篇 unsw sydney
  • 6 篇 college of compu...
  • 5 篇 badji mokhtar un...
  • 5 篇 xi'an university...
  • 5 篇 indian statistic...
  • 5 篇 southwest jiaoto...
  • 5 篇 kobe university ...
  • 5 篇 southern univers...
  • 4 篇 columbia univers...
  • 4 篇 chitkara univers...
  • 4 篇 shanghai jiao to...
  • 4 篇 institute of big...
  • 4 篇 centre for patte...
  • 4 篇 shandong institu...

作者

  • 12 篇 de-shuang huang
  • 12 篇 venkatesh svetha
  • 8 篇 petra perner
  • 7 篇 phung dinh
  • 7 篇 jacek m. zurada
  • 7 篇 krasotkina olga
  • 7 篇 mottl vadim
  • 6 篇 zheng-guang wu
  • 6 篇 ryszard tadeusie...
  • 6 篇 marcin korytkows...
  • 6 篇 hongyi li
  • 6 篇 chaojie li
  • 6 篇 biao luo
  • 6 篇 lotfi a. zadeh
  • 6 篇 kang-hyun jo
  • 6 篇 leszek rutkowski
  • 6 篇 long cheng
  • 6 篇 zhongzhi shi
  • 5 篇 zhang yan
  • 5 篇 vitoantonio bevi...

语言

  • 3,235 篇 英文
  • 73 篇 其他
  • 31 篇 中文
检索条件"任意字段=4th International Conference on Machine Learning and Data Mining in Pattern Recognition"
3325 条 记 录,以下是1-10 订阅
排序:
2023 IEEE 4th international conference on pattern recognition and machine learning, PRML 2023
2023 IEEE 4th International Conference on Pattern Recognitio...
收藏 引用
4th IEEE international conference on pattern recognition and machine learning, PRML 2023
the proceedings contain 98 papers. the topics discussed include: self-supervised learning for point clouds through multi-crop mutual prediction;assessment and prediction of corrosion rate of marine railway bridges bas...
来源: 评论
machine learning Techniques for pattern recognition in High-Dimensional data mining  4
Machine Learning Techniques for Pattern Recognition in High-...
收藏 引用
4th international conference on Electronic Information Engineering and Computer Communication, EIECC 2024
作者: Li, Pochun Northeastern University Boston United States
this paper proposes a frequent pattern data mining algorithm based on support vector machine (SVM), aiming to solve the performance bottleneck of traditional frequent pattern mining algorithms in high-dimensional and ... 详细信息
来源: 评论
14th international conference on machine learning and data mining in pattern recognition, MLDM 2018
14th International Conference on Machine Learning and Data M...
收藏 引用
14th international conference on machine learning and data mining in pattern recognition, MLDM 2018
the proceedings contain 69 papers. the special focus in this conference is on machine learning and data mining in pattern recognition. the topics include: An efficient approximate EMST algorithm for color image segmen...
来源: 评论
14th international conference on machine learning and data mining in pattern recognition, MLDM 2018
14th International Conference on Machine Learning and Data M...
收藏 引用
14th international conference on machine learning and data mining in pattern recognition, MLDM 2018
the proceedings contain 69 papers. the special focus in this conference is on machine learning and data mining in pattern recognition. the topics include: An efficient approximate EMST algorithm for color image segmen...
来源: 评论
Research on Student Performance Prediction Based on Clustered Graph Neural Networks  4
Research on Student Performance Prediction Based on Clustere...
收藏 引用
4th international conference on machine learning and Intelligent Systems Engineering (MLISE)
作者: Lai, Xiaochen Zhao, Sheng Zhang, Zheng Pan, Xiaodi Dalian Univ Technol Sch Software Dalian Peoples R China
the advent of the big data era has brought about profound changes in modern education, making educational data mining an important field within the realm of data analysis. Predicting students' academic performance... 详细信息
来源: 评论
Perspective of deep learning strategies for analysis of 1D biomedical signals  4th
Perspective of deep learning strategies for analysis of 1D b...
收藏 引用
4th Annual international conference on data Science, machine learning and Blockchain Technology, AICDMB 2023
作者: Vishwanath, K.R. Rohith, V. Vinutha, D.C. Vijay, C.P. Rao, Soundarya Govinda Sriraam, N. VTU India VVCE India
Artificial Intelligence and machine learning encompass a broader range of technologies, of which Deep learning is a specific subset and it is expeditiously evolving in the medical field. Most medical devices or imagin... 详细信息
来源: 评论
Graph based Clustering Techniques  15
Graph based Clustering Techniques
收藏 引用
15th international conference on Advances in Computing, Control, and Telecommunication Technologies, ACT 2024
作者: Pawar, Vaishali Chandwadkar, Radhika MVPS's KBTCOE Computer Engineering Department Nashik India
Clustering is widely used technique to find hidden, meaningful patterns in the given dataset, called as clusters. It is grouping of data into groups of similar objects. the objective is that the objects within a group... 详细信息
来源: 评论
Multi Dimensional Deep Encoding for Categorical Feature Space  24
Multi Dimensional Deep Encoding for Categorical Feature Spac...
收藏 引用
13th international conference on Computing and pattern recognition, ICCPR 2024
作者: Alamuri, Madhavi Surampudi, Bapiraju Negi, Atul School of Computer and Information Sciences University of Hyderabad Telangana State Hyderabad India Cognitive Science Lab International Institute of Information Technology Telangana State Hyderabad India
Categorical data classification and clustering are essential to many fields, including pattern recognition, data mining, knowledge discovery, and machine learning. It is crucial to understand how to provide categorica... 详细信息
来源: 评论
Leveraging Semi-Supervised learning to Enhance data mining for Image Classification under Limited Labeled data  4
Leveraging Semi-Supervised Learning to Enhance Data Mining f...
收藏 引用
4th international conference on Electronic Information Engineering and Computer Communication, EIECC 2024
作者: Shen, Aoran Dai, Minghao Hu, Jiacheng Liang, Yingbin Wang, Shiru Du, Junliang University of Michigan Ann Arbor United States Columbia University New York United States Tulane University New Orleans United States Northeastern University Seattle United States Dartmouth College Hanover United States Shanghai Jiao Tong University Shanghai China
In the 21st-century information age, with the development of big data technology, effectively extracting valuable information from massive data has become a key issue. Traditional data mining methods are inadequate wh... 详细信息
来源: 评论
Tool Wear State recognition Based on Multi-source Feature Fusion and Deep learning  4
Tool Wear State Recognition Based on Multi-source Feature Fu...
收藏 引用
4th international conference on machine learning and Intelligent Systems Engineering (MLISE)
作者: Song, Ning Yu, Yuna Han, Tongtongn Xie, Guihua Mo, Desheng Li, Na Qilu Inst Technol Jinan Peoples R China
Aiming at the problems of single feature dimension and low accuracy in condition monitoring only from vibration characteristics and tool wear characteristics. In this paper, a tool wear state recognition method based ... 详细信息
来源: 评论