咨询与建议

限定检索结果

文献类型

  • 3,133 篇 会议
  • 171 册 图书
  • 28 篇 期刊文献

馆藏范围

  • 3,331 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,241 篇 工学
    • 2,038 篇 计算机科学与技术...
    • 1,086 篇 软件工程
    • 402 篇 信息与通信工程
    • 358 篇 电气工程
    • 249 篇 生物工程
    • 169 篇 控制科学与工程
    • 157 篇 生物医学工程(可授...
    • 73 篇 光学工程
    • 73 篇 化学工程与技术
    • 68 篇 机械工程
    • 63 篇 仪器科学与技术
    • 59 篇 电子科学与技术(可...
    • 58 篇 安全科学与工程
    • 47 篇 交通运输工程
    • 38 篇 材料科学与工程(可...
    • 38 篇 动力工程及工程热...
  • 718 篇 理学
    • 378 篇 数学
    • 273 篇 生物学
    • 168 篇 物理学
    • 147 篇 统计学(可授理学、...
    • 104 篇 系统科学
    • 70 篇 化学
  • 460 篇 管理学
    • 298 篇 图书情报与档案管...
    • 200 篇 管理科学与工程(可...
    • 96 篇 工商管理
  • 300 篇 医学
    • 273 篇 临床医学
    • 125 篇 基础医学(可授医学...
    • 70 篇 药学(可授医学、理...
    • 53 篇 公共卫生与预防医...
  • 64 篇 法学
    • 57 篇 社会学
  • 32 篇 经济学
  • 31 篇 教育学
  • 28 篇 农学
  • 6 篇 艺术学
  • 3 篇 军事学
  • 1 篇 文学

主题

  • 545 篇 data mining
  • 543 篇 machine learning
  • 286 篇 pattern recognit...
  • 239 篇 deep learning
  • 188 篇 feature extracti...
  • 160 篇 support vector m...
  • 156 篇 artificial intel...
  • 120 篇 training
  • 118 篇 accuracy
  • 115 篇 machine learning...
  • 95 篇 data models
  • 91 篇 data mining and ...
  • 75 篇 classification
  • 72 篇 neural networks
  • 70 篇 convolutional ne...
  • 68 篇 predictive model...
  • 67 篇 big data
  • 64 篇 computational mo...
  • 57 篇 sentiment analys...
  • 55 篇 learning systems

机构

  • 10 篇 chinese academy ...
  • 9 篇 chitkara centre ...
  • 8 篇 zhejiang univers...
  • 7 篇 guangdong univer...
  • 7 篇 centre of resear...
  • 6 篇 central south un...
  • 6 篇 unsw sydney
  • 6 篇 college of compu...
  • 5 篇 badji mokhtar un...
  • 5 篇 xi'an university...
  • 5 篇 indian statistic...
  • 5 篇 southwest jiaoto...
  • 5 篇 kobe university ...
  • 5 篇 southern univers...
  • 4 篇 columbia univers...
  • 4 篇 chitkara univers...
  • 4 篇 shanghai jiao to...
  • 4 篇 institute of big...
  • 4 篇 centre for patte...
  • 4 篇 shandong institu...

作者

  • 12 篇 de-shuang huang
  • 12 篇 venkatesh svetha
  • 8 篇 petra perner
  • 7 篇 phung dinh
  • 7 篇 jacek m. zurada
  • 7 篇 krasotkina olga
  • 7 篇 mottl vadim
  • 6 篇 zheng-guang wu
  • 6 篇 ryszard tadeusie...
  • 6 篇 marcin korytkows...
  • 6 篇 hongyi li
  • 6 篇 chaojie li
  • 6 篇 biao luo
  • 6 篇 lotfi a. zadeh
  • 6 篇 kang-hyun jo
  • 6 篇 leszek rutkowski
  • 6 篇 long cheng
  • 6 篇 zhongzhi shi
  • 5 篇 zhang yan
  • 5 篇 vitoantonio bevi...

语言

  • 3,198 篇 英文
  • 117 篇 其他
  • 32 篇 中文
检索条件"任意字段=4th International Conference on Machine Learning and Data Mining in Pattern Recognition"
3332 条 记 录,以下是3051-3060 订阅
排序:
Multi-label associative classification of medical documents from MEDLINE
Multi-label associative classification of medical documents ...
收藏 引用
4th international conference on machine learning and Applications
作者: Rak, R Kurgan, L Reformat, M Univ Alberta Edmonton AB T6G 2V4 Canada
Ability to provide convenient access to scientific documents becomes a difficult problem due to large and constantly increasing number of incoming documents and extensive manual work associated with their storage, des... 详细信息
来源: 评论
mining for context recognition in document filtering and classification  05
Mining for context recognition in document filtering and cla...
收藏 引用
4th Annual ACIS international conference on Computer and Information Science, ICIS 2005
作者: Liu, Rey-Long Dept. of Information Management Chung Hua University HsinChu Taiwan
Much information has been hierarchically organized to facilitate information browsing, retrieval, and dissemination. In practice, much information may be entered at any time, but only a small subset of the information... 详细信息
来源: 评论
Participatory learning in Fuzzy Clustering
Participatory Learning in Fuzzy Clustering
收藏 引用
IEEE international conference on Fuzzy Systems (FUZZ-IEEE)
作者: L. Silva F. Gomide R. Yager FEEC-DCA State University of Campinas Campinas Brazil Iona College New Rochelle NY USA
this work suggests an unsupervised fuzzy clustering algorithm based on the concept of participatory learning introduced by Yager in the nineties. the performance of the algorithm is verified with synthetic data sets a... 详细信息
来源: 评论
Supervised tensor learning
Supervised tensor learning
收藏 引用
IEEE international conference on data mining (ICDM)
作者: Dacheng Tao Xuelong Li Weiming Hu S. Maybank Xindong Wu School of Computer Science and Information Systems Birkbeck College University of London UK National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences China Department of Computer Science University of Vermont USA
this paper aims to take general tensors as inputs for supervised learning. A supervised tensor learning (STL) framework is established for convex optimization based learning techniques such as support vector machines ... 详细信息
来源: 评论
A bayesian framework for regularized SVM parameter estimation
A bayesian framework for regularized SVM parameter estimatio...
收藏 引用
4th IEEE international conference on data mining
作者: Gregor, J Liu, ZQ Univ Tennessee Dept Comp Sci Knoxville TN 37996 USA
the support vector machine (SVM) is considered here in the context of pattern classification, the emphasis is on the soft margin classifier which uses regularization to handle non-separable learning samples. We presen... 详细信息
来源: 评论
Matching in frequent tree discovery
Matching in frequent tree discovery
收藏 引用
4th IEEE international conference on data mining
作者: Bringmann, B Univ Freiburg Machine Learning Lab D-79098 Freiburg Germany
Various definitions and frameworks for discovering frequent trees in forests have been developed recently. At the heart of these frameworks lies the notion of matching, which determines when a pattern tree matches a t... 详细信息
来源: 评论
Improving the reliability of decision tree and naive Bayes learners
Improving the reliability of decision tree and naive Bayes l...
收藏 引用
4th IEEE international conference on data mining
作者: Lindsay, D Cox, S Univ London Royal Holloway Comp Learning Res Ctr Egham TW20 0EX Surrey England
the C4.5 Decision Tree and Naive Bayes learners are known to produce unreliable probability forecasts. We have used simple Binning [11] and Laplace Transform [2] techniques to improve the reliability of these learners... 详细信息
来源: 评论
Face recognition based on discriminative manifold learning
Face recognition based on discriminative manifold learning
收藏 引用
17th international conference on pattern recognition (ICPR)
作者: Wu, YM Chan, KL Wang, L Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore
In this paper a discriminative manifold learning method for face recognition is proposed which achieved the discriminative embedding the high dimensional face data into a low dimensional hidden manifold. Unlike the re... 详细信息
来源: 评论
learning spatial context from tracking using penalised likelihoods
Learning spatial context from tracking using penalised likel...
收藏 引用
17th international conference on pattern recognition (ICPR)
作者: McKenna, SJ Nait-Charif, H Univ Dundee Div Appl Comp Dundee DD1 4HN Scotland
MAP estimation of Gaussian mixtures through maximisation of penalised likelihoods was used to learn models of spatial context. this enabled prior beliefs about the scale, orientation and elongation of semantic regions... 详细信息
来源: 评论
A dynamic approach to learning vector quantization
A dynamic approach to learning vector quantization
收藏 引用
17th international conference on pattern recognition (ICPR)
作者: De Stefano, C D'Elia, C Marcelli, A Univ Cassino DAEIIMI I-03043 Cassino Italy
learning Vector Quantization networks are generally considered a powerful pattern recognition tool. their main drawback, however, is the Competitive learning algorithm they are based upon, that suffers of the so calle... 详细信息
来源: 评论