咨询与建议

限定检索结果

文献类型

  • 1,734 篇 会议
  • 45 册 图书
  • 12 篇 期刊文献

馆藏范围

  • 1,790 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 1,229 篇 工学
    • 1,097 篇 计算机科学与技术...
    • 629 篇 软件工程
    • 257 篇 信息与通信工程
    • 201 篇 电气工程
    • 177 篇 生物工程
    • 102 篇 控制科学与工程
    • 98 篇 生物医学工程(可授...
    • 60 篇 光学工程
    • 46 篇 电子科学与技术(可...
    • 46 篇 化学工程与技术
    • 42 篇 机械工程
    • 41 篇 仪器科学与技术
    • 40 篇 安全科学与工程
    • 29 篇 动力工程及工程热...
    • 29 篇 交通运输工程
    • 27 篇 材料科学与工程(可...
  • 457 篇 理学
    • 200 篇 数学
    • 197 篇 生物学
    • 144 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 51 篇 系统科学
    • 46 篇 化学
  • 237 篇 管理学
    • 171 篇 图书情报与档案管...
    • 89 篇 管理科学与工程(可...
    • 46 篇 工商管理
  • 182 篇 医学
    • 160 篇 临床医学
    • 72 篇 基础医学(可授医学...
    • 39 篇 药学(可授医学、理...
    • 32 篇 公共卫生与预防医...
  • 34 篇 法学
    • 30 篇 社会学
  • 17 篇 经济学
  • 14 篇 教育学
  • 11 篇 农学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 240 篇 machine learning
  • 185 篇 deep learning
  • 140 篇 pattern recognit...
  • 110 篇 feature extracti...
  • 91 篇 support vector m...
  • 88 篇 data mining
  • 79 篇 accuracy
  • 75 篇 training
  • 59 篇 convolutional ne...
  • 51 篇 machine learning...
  • 48 篇 data models
  • 46 篇 artificial intel...
  • 41 篇 computational mo...
  • 40 篇 neural networks
  • 39 篇 face recognition
  • 36 篇 learning systems
  • 36 篇 adversarial mach...
  • 33 篇 predictive model...
  • 32 篇 classification
  • 32 篇 image recognitio...

机构

  • 6 篇 college of compu...
  • 5 篇 xi'an university...
  • 5 篇 shanghai jiao to...
  • 4 篇 badji mokhtar un...
  • 4 篇 institute of big...
  • 4 篇 chitkara centre ...
  • 4 篇 chitkara univers...
  • 4 篇 library shanghai...
  • 3 篇 university of mi...
  • 3 篇 school of comput...
  • 3 篇 univ chittagong ...
  • 3 篇 chongqing univer...
  • 3 篇 centre of resear...
  • 3 篇 school of comput...
  • 3 篇 school of comput...
  • 3 篇 school of design...
  • 3 篇 korea univ dept ...
  • 3 篇 school of automa...
  • 3 篇 university of mi...
  • 3 篇 shenyang jianzhu...

作者

  • 5 篇 venkatesh svetha
  • 4 篇 ashwini kodipall...
  • 4 篇 zhang yan
  • 4 篇 srinivasa gowri
  • 4 篇 kamel mohamed s.
  • 4 篇 lall brejesh
  • 4 篇 trupthi rao
  • 3 篇 andersson karl
  • 3 篇 peng yang
  • 3 篇 malerba donato
  • 3 篇 karl andersson
  • 3 篇 chaudhury santan...
  • 3 篇 de-shuang huang
  • 3 篇 sekhar c. chandr...
  • 3 篇 wang shuo
  • 3 篇 kamata sei-ichir...
  • 3 篇 mohammad shahada...
  • 3 篇 azizi nabiha
  • 3 篇 phung dinh
  • 3 篇 krasotkina olga

语言

  • 1,515 篇 英文
  • 267 篇 其他
  • 26 篇 中文
检索条件"任意字段=4th International Conference on Machine Learning and Data Minining in Pattern Recognition"
1791 条 记 录,以下是1281-1290 订阅
排序:
Clinical Named Entity recognition: Challenges and opportunities  4
Clinical Named Entity Recognition: Challenges and opportunit...
收藏 引用
4th IEEE international conference on Big data (Big data)
作者: Kundeti, Srinivasa Rao Vijayananda, J. Mujjiga, Srikanth Kalyan, M. Philips Healthcare Data Sci Bangalore Karnataka India
Information Extraction (IE), one of the important tasks in text analysis and Natural Language Processing (NLP), involves extracting meaningful pieces of knowledge from unstructured information sources, as unstructured... 详细信息
来源: 评论
Hyperalignment of Multi-subject fMRI data by Synchronized Projections  4th
Hyperalignment of Multi-subject fMRI Data by Synchronized Pr...
收藏 引用
4th international Workshop on machine learning and Interpretation in Neuroimaging (MLINI) Held at conference on Neural Information Processing Systems (NIPS)
作者: Rustamov, Raif M. Guibas, Leonidas Stanford Univ Dept Comp Sci Stanford CA 94305 USA
Group analysis of fMRI data via multivariate pattern methods requires accurate alignments between neuronal activities of different subjects in order to attain competitive inter-subject classification rates. Hyperalign... 详细信息
来源: 评论
Giving voice to office customers: Best practices in how office handles verbatim text feedback  4
Giving voice to office customers: Best practices in how offi...
收藏 引用
4th IEEE international conference on Big data, Big data 2016
作者: Bentley, Michael Batra, Soumya Office Product Group Microsoft RedmondWA United States
Microsoft Office users submit hundreds of thousands of pieces of verbatim feedback per month. How can an engineer or manager in Office find the signal in this data to make business decisions? this paper presents an ov... 详细信息
来源: 评论
Deep learning in the Automotive Industry: Applications and Tools  4
Deep Learning in the Automotive Industry: Applications and T...
收藏 引用
4th IEEE international conference on Big data (Big data)
作者: Luckow, Andre Cook, Matthew Ashcraftt, Nathan Weill, Edwin Djerekarov, Emil Vorster, Bennie BMW Grp IT Res Ctr Informat Management Amer Greenville SC 29607 USA Clemson Univ Clemson SC USA Univ Cincinnati Cincinnati OH USA
Deep learning refers to a set of machine learning techniques that utilize neural networks with many hidden layers for tasks, such as image classification, speech recognition, language understanding. Deep learning has ... 详细信息
来源: 评论
Reverse Engineering Smart card Malware using Side Channel Analysis with machine learning Techniques  4
Reverse Engineering Smart card Malware using Side Channel An...
收藏 引用
4th IEEE international conference on Big data (Big data)
作者: Tsague, Hippolyte Djonon Twala, Bheki CSIR MDS Smart Token Res Grp Pretoria South Africa Univ Johannesburg Dept Elect & Elect Engn Sci Inst Intelligent Syst Fac Engn Johannesburg South Africa
From inception, side channel leakage has been widely used for the purposes of extracting secret information, such as cryptographic keys, from embedded devices. However, in a few instances it has been utilized for extr... 详细信息
来源: 评论
Label-Alignment-Based Multi-Task Feature Selection for Multimodal Classification of Brain Disease  4th
Label-Alignment-Based Multi-Task Feature Selection for Multi...
收藏 引用
4th international Workshop on machine learning and Interpretation in Neuroimaging (MLINI) Held at conference on Neural Information Processing Systems (NIPS)
作者: Zu, Chen Jie, Biao Chen, Songcan Zhang, Daoqiang Nanjing Univ Aeronaut & Astronaut Dept Comp Sci & Engn Nanjing 210016 Jiangsu Peoples R China
Recently, multi-task feature selection methods have been applied to jointly identify the disease-related brain regions for fusing information from multiple modalities of neuroimaging data. However, most of those appro... 详细信息
来源: 评论
Non-deep CNN for Multi-Modal Image Classification and Feature learning: An Azure-based Model  4
Non-deep CNN for Multi-Modal Image Classification and Featur...
收藏 引用
4th IEEE international conference on Big data (Big data)
作者: Roychowdhury, Sohini Ren, Johnny Univ Washington Dept Elect & Comp Engn Bothell WA 98011 USA
Convolutional Neural Networks (CNN) are useful methods for identification of previously unknown embedded patterns in images. Several object and facial recognition along with image segmentation tasks have benefited fro... 详细信息
来源: 评论
Automated Quality Control for Proton Magnetic Resonance Spectroscopy data Using Convex Non-negative Matrix Factorization  4th
Automated Quality Control for Proton Magnetic Resonance Spec...
收藏 引用
4th international Work-conference on Bioinformatics and Biomedical Engineering (IWBBIO)
作者: Mocioiu, Victor Kyathanahally, Sreenath P. Arus, Carles Vellido, Alfredo Julia-Sape, Margarida Univ Autonoma Barcelona Dept Bioquim & Biol Mol E-08193 Barcelona Spain Univ Bern Dept Radiol & Clin Res Bern Switzerland Univ Politecn Cataluna BarcelonaTech Dept Ciencies Comp Campus Nord ES-08034 Barcelona Spain Ctr Invest Biomed Red Bioingn Biomat & Nanomed CI Barcelona Spain
Proton Magnetic Resonance Spectroscopy (H-1 MRS) has proven its diagnostic potential in a variety of conditions. However, MRS is not yet widely used in clinical routine because of the lack of experts on its diagnostic... 详细信息
来源: 评论
4th international conference on Distributed, Ambient and Pervasive Interactions, DAPI 2016 held as part of 18th international conference on Human-Computer Interaction, HCI international 2016
4th International Conference on Distributed, Ambient and Per...
收藏 引用
18th international conference on Human-Computer Interaction, HCI international 2016
the proceedings contain 45 papers. the special focus in this conference is on Developing Smart Environments, recognition Techniques in Ambient Intelligence, Tracking, Human Behavior in Smart Environments and Affect in...
来源: 评论
OpenCL caffe: Accelerating and enabling a cross platform machine learning framework  16
OpenCL caffe: Accelerating and enabling a cross platform mac...
收藏 引用
4th international Workshop on OpenCL, IWOCL 2016
作者: Gu, Junli Liu, Yibing Gao, Yuan Zhu, Maohua
Deep neural networks (DNN) achieved significant breakthrough in vision recognition in 2012 and quickly became the leading machine learning algorithm in Big data based large scale object recognition applications. the s... 详细信息
来源: 评论