咨询与建议

限定检索结果

文献类型

  • 1,721 篇 会议
  • 45 册 图书
  • 12 篇 期刊文献

馆藏范围

  • 1,777 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 1,224 篇 工学
    • 1,093 篇 计算机科学与技术...
    • 629 篇 软件工程
    • 253 篇 信息与通信工程
    • 200 篇 电气工程
    • 177 篇 生物工程
    • 99 篇 控制科学与工程
    • 98 篇 生物医学工程(可授...
    • 60 篇 光学工程
    • 46 篇 化学工程与技术
    • 45 篇 电子科学与技术(可...
    • 41 篇 机械工程
    • 41 篇 仪器科学与技术
    • 40 篇 安全科学与工程
    • 30 篇 交通运输工程
    • 28 篇 动力工程及工程热...
    • 27 篇 材料科学与工程(可...
  • 456 篇 理学
    • 199 篇 数学
    • 197 篇 生物学
    • 144 篇 物理学
    • 83 篇 统计学(可授理学、...
    • 51 篇 系统科学
    • 46 篇 化学
  • 233 篇 管理学
    • 167 篇 图书情报与档案管...
    • 86 篇 管理科学与工程(可...
    • 43 篇 工商管理
  • 182 篇 医学
    • 160 篇 临床医学
    • 72 篇 基础医学(可授医学...
    • 39 篇 药学(可授医学、理...
    • 32 篇 公共卫生与预防医...
  • 34 篇 法学
    • 30 篇 社会学
  • 17 篇 经济学
  • 14 篇 教育学
  • 11 篇 农学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 237 篇 machine learning
  • 182 篇 deep learning
  • 137 篇 pattern recognit...
  • 107 篇 feature extracti...
  • 89 篇 support vector m...
  • 88 篇 data mining
  • 74 篇 accuracy
  • 72 篇 training
  • 57 篇 convolutional ne...
  • 50 篇 machine learning...
  • 46 篇 artificial intel...
  • 45 篇 data models
  • 40 篇 neural networks
  • 39 篇 face recognition
  • 38 篇 computational mo...
  • 36 篇 learning systems
  • 36 篇 adversarial mach...
  • 33 篇 predictive model...
  • 32 篇 classification
  • 32 篇 image recognitio...

机构

  • 6 篇 college of compu...
  • 5 篇 xi'an university...
  • 4 篇 badji mokhtar un...
  • 4 篇 shanghai jiao to...
  • 4 篇 institute of big...
  • 4 篇 chitkara centre ...
  • 4 篇 chitkara univers...
  • 4 篇 library shanghai...
  • 3 篇 school of comput...
  • 3 篇 univ chittagong ...
  • 3 篇 chongqing univer...
  • 3 篇 centre of resear...
  • 3 篇 school of comput...
  • 3 篇 school of comput...
  • 3 篇 school of design...
  • 3 篇 korea univ dept ...
  • 3 篇 school of automa...
  • 3 篇 university of mi...
  • 3 篇 shenyang jianzhu...
  • 3 篇 xi'an university...

作者

  • 5 篇 venkatesh svetha
  • 4 篇 ashwini kodipall...
  • 4 篇 zhang yan
  • 4 篇 srinivasa gowri
  • 4 篇 kamel mohamed s.
  • 4 篇 lall brejesh
  • 4 篇 trupthi rao
  • 3 篇 andersson karl
  • 3 篇 peng yang
  • 3 篇 malerba donato
  • 3 篇 karl andersson
  • 3 篇 chaudhury santan...
  • 3 篇 de-shuang huang
  • 3 篇 sekhar c. chandr...
  • 3 篇 wang shuo
  • 3 篇 kamata sei-ichir...
  • 3 篇 mohammad shahada...
  • 3 篇 azizi nabiha
  • 3 篇 phung dinh
  • 3 篇 krasotkina olga

语言

  • 1,695 篇 英文
  • 74 篇 其他
  • 22 篇 中文
检索条件"任意字段=4th International Conference on Machine Learning and Data Minining in Pattern Recognition"
1778 条 记 录,以下是1671-1680 订阅
排序:
Statistical supports for frequent itemsets on data streams
收藏 引用
4th international conference on machine learning and data Mining in pattern recognition, MLDM 2005
作者: Laur, Pierre-Alain Symphor, Jean-Emile Nock, Richard Poncelet, Pascal GRIMAAG-Dépt Scientifique Interfacultaire Université Antilles-Guyane Campus de Schoelcher B.P. 7209 97275 Schoelcher Cedex Martinique France LG2IP-Ecole des Mines d'Alès Site EERIE parc scientifique Georges Besse 30035 Nîmes Cedex France
When we mine information for knowledge on a whole data streams it's necessary to cope with uncertainty as only a part of the stream is available. We introduce a stastistical technique, independant from the used al... 详细信息
来源: 评论
An approach to mining picture objects based on textual cues
收藏 引用
4th international conference on machine learning and data Mining in pattern recognition, MLDM 2005
作者: Adegorite, Adeoye I. Basir, Otman A. Kamel, Mohamed S. Shaban, Khaled B. Pattern Analysis and Machine Intelligence Lab. Department of Electrical and Computer Engineering University of Waterloo Waterloo Ont. N2L 3G1 Canada
the task of extracting knowledge from text is an important research problem for information processing and document understanding. Approaches to capture the semantics of picture objects in documents constitute subject... 详细信息
来源: 评论
data mining on crash simulation data
收藏 引用
4th international conference on machine learning and data Mining in pattern recognition, MLDM 2005
作者: Kuhlmann, Annette Vetter, Ralf-Michael Lübbing, Christoph thole, Clemens-August Schloss Birlinghoven 53754 Sankt Augustin Germany BMW AG-EK-210 Knorrstrasse 147 80788 München Germany
the work presented in this paper is part of the cooperative research project AUTO-OPT carried out by twelve partners from the automotive industries. One major work package concerns the application of data mining metho... 详细信息
来源: 评论
Temporal approach to association rule mining using T-tree and P-tree
收藏 引用
4th international conference on machine learning and data Mining in pattern recognition, MLDM 2005
作者: Verma, Keshri Vyas, O.P. Vyas, Ranjana School of Studies in Computer Science Pt. Ravishankar Shukla University Raipur Chhattisgarh - 49201 India
the real transactional databases often exhibit temporal characteristic and time varying behavior. Temporal association rule has thus become an active area of research. A calendar unit such as months and days, clock un... 详细信息
来源: 评论
Using clustering to learn distance functions for supervised similarity assessment
收藏 引用
4th international conference on machine learning and data Mining in pattern recognition, MLDM 2005
作者: Eick, Christoph F. Rouhana, Alain Bagherjeiran, Abraham Vilalta, Ricardo Department of Computer Science University of Houston Houston TX 77204-3010 United States
Assessing the similarity between objects is a prerequisite for many data mining techniques. this paper introduces a novel approach to learn distance functions that maximizes the clustering of objects belonging to the ... 详细信息
来源: 评论
Mining expressive temporal associations from complex data
收藏 引用
4th international conference on machine learning and data Mining in pattern recognition, MLDM 2005
作者: Pray, Keith A. Ruiz, Carolina BAE Systems Burlington MA 01803 United States Worcester MA 01609 United States
We introduce an algorithm for mining expressive temporal relationships from complex data. Our algorithm, AprioriSetsAndSequences (ASAS), extends the Apriori algorithm to data sets in which a single data instance may c... 详细信息
来源: 评论
Birds of a feather surf together: Using clustering methods to improve navigation prediction from internet log files
收藏 引用
4th international conference on machine learning and data Mining in pattern recognition, MLDM 2005
作者: Halvey, Martin Keane, Mark T. Smyth, Barry Department of Computer Science Smart Media Institute University College Dublin Belfield Dublin 4 Ireland
Many systems attempt to forecast user navigation in the Internet through the use of past behavior, preferences and environmental factors. Most of these models overlook the possibility that users may have many diverse ... 详细信息
来源: 评论
Face recognition based on discriminative manifold learning
Face recognition based on discriminative manifold learning
收藏 引用
17th international conference on pattern recognition (ICPR)
作者: Wu, YM Chan, KL Wang, L Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore
In this paper a discriminative manifold learning method for face recognition is proposed which achieved the discriminative embedding the high dimensional face data into a low dimensional hidden manifold. Unlike the re... 详细信息
来源: 评论
learning spatial context from tracking using penalised likelihoods
Learning spatial context from tracking using penalised likel...
收藏 引用
17th international conference on pattern recognition (ICPR)
作者: McKenna, SJ Nait-Charif, H Univ Dundee Div Appl Comp Dundee DD1 4HN Scotland
MAP estimation of Gaussian mixtures through maximisation of penalised likelihoods was used to learn models of spatial context. this enabled prior beliefs about the scale, orientation and elongation of semantic regions... 详细信息
来源: 评论
A bayesian framework for regularized SVM parameter estimation
A bayesian framework for regularized SVM parameter estimatio...
收藏 引用
4th IEEE international conference on data Mining
作者: Gregor, J Liu, ZQ Univ Tennessee Dept Comp Sci Knoxville TN 37996 USA
the support vector machine (SVM) is considered here in the context of pattern classification, the emphasis is on the soft margin classifier which uses regularization to handle non-separable learning samples. We presen... 详细信息
来源: 评论