咨询与建议

限定检索结果

文献类型

  • 451 篇 会议
  • 27 篇 期刊文献

馆藏范围

  • 478 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 376 篇 工学
    • 255 篇 计算机科学与技术...
    • 233 篇 控制科学与工程
    • 86 篇 电气工程
    • 73 篇 软件工程
    • 51 篇 机械工程
    • 30 篇 石油与天然气工程
    • 20 篇 生物工程
    • 17 篇 信息与通信工程
    • 15 篇 力学(可授工学、理...
    • 12 篇 生物医学工程(可授...
    • 9 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 交通运输工程
    • 6 篇 材料科学与工程(可...
    • 6 篇 土木工程
    • 6 篇 安全科学与工程
    • 5 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 建筑学
    • 4 篇 船舶与海洋工程
  • 84 篇 理学
    • 40 篇 数学
    • 36 篇 生物学
    • 28 篇 系统科学
    • 20 篇 统计学(可授理学、...
    • 15 篇 物理学
    • 5 篇 化学
  • 33 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 10 篇 教育学
    • 10 篇 教育学
  • 9 篇 医学
  • 3 篇 军事学
  • 2 篇 经济学
  • 2 篇 法学
  • 1 篇 农学

主题

  • 38 篇 reinforcement le...
  • 20 篇 machine learning
  • 18 篇 neural networks
  • 15 篇 heuristic algori...
  • 13 篇 adaptive control
  • 12 篇 vehicle dynamics
  • 12 篇 control systems
  • 12 篇 dynamics
  • 10 篇 optimization
  • 10 篇 sliding mode con...
  • 10 篇 trajectory
  • 10 篇 deep reinforceme...
  • 9 篇 optimal control
  • 9 篇 robustness
  • 8 篇 deep learning
  • 8 篇 simulation
  • 8 篇 robotics
  • 7 篇 model predictive...
  • 7 篇 nonlinear system...
  • 7 篇 data models

机构

  • 5 篇 mit cambridge ma...
  • 4 篇 georgia inst tec...
  • 4 篇 univ calif berke...
  • 3 篇 univ calif san d...
  • 3 篇 univ penn philad...
  • 3 篇 stanford univ st...
  • 3 篇 univ michigan de...
  • 2 篇 ohio state univ ...
  • 2 篇 duke univ durham...
  • 2 篇 natl renewable e...
  • 2 篇 school of electr...
  • 2 篇 katholieke univ ...
  • 2 篇 univ penn dept e...
  • 2 篇 durban univ tech...
  • 2 篇 delft univ techn...
  • 2 篇 college of autom...
  • 2 篇 univ bonn autono...
  • 2 篇 zhejiang univ de...
  • 2 篇 school of law he...
  • 2 篇 carnegie mellon ...

作者

  • 3 篇 vamvoudakis kyri...
  • 3 篇 zavlanos michael...
  • 3 篇 zhang baosen
  • 3 篇 li na
  • 3 篇 wang cong
  • 3 篇 hazan elad
  • 3 篇 cong wang
  • 2 篇 gokdag mustafa
  • 2 篇 soffker dirk
  • 2 篇 michiels w.
  • 2 篇 nakahira yorie
  • 2 篇 cui wenqi
  • 2 篇 zico kolter j.
  • 2 篇 tomizuka masayos...
  • 2 篇 fradkov alexande...
  • 2 篇 pravesh
  • 2 篇 levine sergey
  • 2 篇 minasyan edgar
  • 2 篇 pavlichenko dmyt...
  • 2 篇 fan chuchu

语言

  • 466 篇 英文
  • 8 篇 其他
  • 5 篇 中文
检索条件"任意字段=5th Annual Conference on Learning for Dynamics and Control"
478 条 记 录,以下是11-20 订阅
排序:
ARL-Based Multi-Action Market Making with Hawkes Processes and Variable Volatility  24
ARL-Based Multi-Action Market Making with Hawkes Processes a...
收藏 引用
5th International conference on AI in Finance
作者: Wang, Ziyi Ventre, Carmine Polukarov, Maria Kings Coll London Dept Informat London England Kings Coll London London England
We advance market-making strategies by integrating Adversarial Reinforcement learning (ARL), Hawkes Processes, and variable volatility levels while also expanding the action space available to market makers (MMs). To ... 详细信息
来源: 评论
Policy learning for Active Target Tracking over Continuous SE(3) Trajectories  5
Policy Learning for Active Target Tracking over Continuous S...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Yang, Pengzhi Koga, Shumon Asgharivaskasi, Arash Atanasov, Nikolay Univ Calif San Diego Dept Elect & Comp Engn La Jolla CA 92093 USA
this paper develops a model-based policy gradient algorithm for tracking dynamic targets using a mobile agent equipped with an onboard sensor with limited field of view. the task is to obtain a continuous control poli... 详细信息
来源: 评论
FedSysID: A Federated Approach to Sample-Efficient System Identification  5
FedSysID: A Federated Approach to Sample-Efficient System Id...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Wang, Han Toso, Leonardo F. Anderson, James Columbia Univ New York NY 10027 USA
We study the problem of learning a linear system model from the observations of M clients. the catch: Each client is observing data from a different dynamical system. this work addresses the question of how multiple c... 详细信息
来源: 评论
learning Coherent Clusters in Weakly-Connected Network Systems  5
Learning Coherent Clusters in Weakly-Connected Network Syste...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Min, Hancheng Mallada, Enrique Johns Hopkins Univ Dept Elect & Comp Engn Baltimore MD 21218 USA
We propose a structure-preserving model-reduction methodology for large-scale dynamic networks with tightly-connected components. First, the coherent groups are identified by a spectral clustering algorithm on the gra... 详细信息
来源: 评论
Hybrid Multi-agent Deep Reinforcement learning for Autonomous Mobility on Demand Systems  5
Hybrid Multi-agent Deep Reinforcement Learning for Autonomou...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Enders, Tobias Harrison, James Pavone, Marco Schiffer, Maximilian Tech Univ Munich Munich Germany Google Res Brain Team Mountain View CA USA Stanford Univ Stanford CA USA
We consider the sequential decision-making problem of making proactive request assignment and rejection decisions for a profit-maximizing operator of an autonomous mobility on demand system. We formalize this problem ... 详细信息
来源: 评论
learning the dynamics of autonomous nonlinear delay systems  5
Learning the dynamics of autonomous nonlinear delay systems
收藏 引用
5th annual conference on learning for dynamics and control
作者: Ji, Xunbi A. Orosz, Gobor Univ Michigan Dept Mech Engn Ann Arbor MI 48109 USA Univ Michigan Dept Civil Environm Engn Ann Arbor MI USA
In this paper, we focus on learning the time delay and nonlinearity of autonomous dynamical systems using trainable time delay neural networks. We demonstrate that, with delays trained together with weights and biases... 详细信息
来源: 评论
Best of Both Worlds in Online control: Competitive Ratio and Policy Regret  5
Best of Both Worlds in Online Control: Competitive Ratio and...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Goel, Gautam Agarwal, Naman Singh, Karan Hazan, Elad Univ Calif Berkeley Simons Inst Berkeley CA 94720 USA Google AI Princeton Princeton NJ USA Carnegie Mellon Univ Tepper Sch Business Pittsburgh PA USA Princeton Univ Dept Comp Sci Princeton NJ USA
We consider the fundamental problem of online control of a linear dynamical system from two different viewpoints: regret minimization and competitive analysis. We prove that the optimal competitive policy is well-appr... 详细信息
来源: 评论
learning to Stabilize High-dimensional Unknown Systems Using Lyapunov-guided Exploration  6
Learning to Stabilize High-dimensional Unknown Systems Using...
收藏 引用
6th annual learning for dynamics and control conference
作者: Zhang, Songyuan Fan, Chuchu MIT Dept Aeronaut & Astronaut Cambridge MA 02139 USA
Designing stabilizing controllers is a fundamental challenge in autonomous systems, particularly for high-dimensional, nonlinear systems that can hardly be accurately modeled with differential equations. the Lyapunov ... 详细信息
来源: 评论
Physics-enhanced Gaussian Process Variational Autoencoder  5
Physics-enhanced Gaussian Process Variational Autoencoder
收藏 引用
5th annual conference on learning for dynamics and control
作者: Beckers, thomas Wu, Qirui Pappas, George J. Vanderbilt Univ Dept Comp Sci Nashville TN 37235 USA Univ Penn Dept Elect & Syst Engn Philadelphia PA USA
Variational autoencoders allow to learn a lower-dimensional latent space based on high-dimensional input/output data. Using video clips as input data, the encoder may be used to describe the movement of an object in t... 详细信息
来源: 评论
Hyperparameter Tuning of an Off-Policy Reinforcement learning Algorithm for H∞ Tracking control  5
Hyperparameter Tuning of an Off-Policy Reinforcement Learnin...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Farahmandi, Alireza Reitz, Brian Debord, Mark Philbrick, Douglas Estabridis, Katia Hewer, Gary Naval Air Warfare Ctr Weap Div China Lake CA 93555 USA
In this work, we present the hyperparameter optimization of an online, off-policy reinforcement learning algorithm based on a parallel search. Since this model-free learning algorithm solves the H-infinity optimal tra... 详细信息
来源: 评论