咨询与建议

限定检索结果

文献类型

  • 452 篇 会议
  • 27 篇 期刊文献

馆藏范围

  • 479 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 376 篇 工学
    • 255 篇 计算机科学与技术...
    • 233 篇 控制科学与工程
    • 86 篇 电气工程
    • 73 篇 软件工程
    • 51 篇 机械工程
    • 30 篇 石油与天然气工程
    • 20 篇 生物工程
    • 17 篇 信息与通信工程
    • 15 篇 力学(可授工学、理...
    • 12 篇 生物医学工程(可授...
    • 9 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 交通运输工程
    • 6 篇 材料科学与工程(可...
    • 6 篇 土木工程
    • 6 篇 安全科学与工程
    • 5 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 建筑学
    • 4 篇 船舶与海洋工程
  • 84 篇 理学
    • 40 篇 数学
    • 36 篇 生物学
    • 28 篇 系统科学
    • 20 篇 统计学(可授理学、...
    • 15 篇 物理学
    • 5 篇 化学
  • 33 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 10 篇 教育学
    • 10 篇 教育学
  • 9 篇 医学
  • 3 篇 军事学
  • 2 篇 经济学
  • 2 篇 法学
  • 1 篇 农学

主题

  • 38 篇 reinforcement le...
  • 21 篇 machine learning
  • 18 篇 neural networks
  • 15 篇 heuristic algori...
  • 13 篇 adaptive control
  • 12 篇 vehicle dynamics
  • 12 篇 control systems
  • 12 篇 dynamics
  • 10 篇 optimization
  • 10 篇 sliding mode con...
  • 10 篇 trajectory
  • 10 篇 deep reinforceme...
  • 9 篇 optimal control
  • 9 篇 robustness
  • 8 篇 deep learning
  • 8 篇 simulation
  • 8 篇 robotics
  • 7 篇 model predictive...
  • 7 篇 nonlinear system...
  • 7 篇 data models

机构

  • 5 篇 mit cambridge ma...
  • 4 篇 georgia inst tec...
  • 4 篇 univ calif berke...
  • 3 篇 univ calif san d...
  • 3 篇 univ penn philad...
  • 3 篇 stanford univ st...
  • 3 篇 univ michigan de...
  • 2 篇 ohio state univ ...
  • 2 篇 duke univ durham...
  • 2 篇 natl renewable e...
  • 2 篇 school of electr...
  • 2 篇 katholieke univ ...
  • 2 篇 univ penn dept e...
  • 2 篇 durban univ tech...
  • 2 篇 delft univ techn...
  • 2 篇 college of autom...
  • 2 篇 univ bonn autono...
  • 2 篇 zhejiang univ de...
  • 2 篇 school of law he...
  • 2 篇 carnegie mellon ...

作者

  • 3 篇 vamvoudakis kyri...
  • 3 篇 zavlanos michael...
  • 3 篇 zhang baosen
  • 3 篇 li na
  • 3 篇 wang cong
  • 3 篇 hazan elad
  • 3 篇 cong wang
  • 2 篇 gokdag mustafa
  • 2 篇 soffker dirk
  • 2 篇 michiels w.
  • 2 篇 nakahira yorie
  • 2 篇 cui wenqi
  • 2 篇 zico kolter j.
  • 2 篇 tomizuka masayos...
  • 2 篇 fradkov alexande...
  • 2 篇 pravesh
  • 2 篇 levine sergey
  • 2 篇 minasyan edgar
  • 2 篇 pavlichenko dmyt...
  • 2 篇 fan chuchu

语言

  • 466 篇 英文
  • 9 篇 其他
  • 5 篇 中文
检索条件"任意字段=5th Annual Conference on Learning for Dynamics and Control"
479 条 记 录,以下是21-30 订阅
排序:
Equilibria of Fully Decentralized learning in Networked Systems  5
Equilibria of Fully Decentralized Learning in Networked Syst...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Jiang, Yan Cui, Wenqi Zhang, Baosen Cortes, Jorge Univ Washington Dept Elect & Comp Engn Seattle WA 98195 USA Univ Calif San Diego Dept Mech & Aerosp Engn San Diego CA 92093 USA
Existing settings of decentralized learning either require players to have full information or the system to have certain special structure that may be hard to check and hinder their applicability to practical systems... 详细信息
来源: 评论
CT-DQN: control-Tutored Deep Reinforcement learning  5
CT-DQN: Control-Tutored Deep Reinforcement Learning
收藏 引用
5th annual conference on learning for dynamics and control
作者: De Lellis, Francesco Coraggio, Marco Russo, Giovanni Musolesi, Mirco di Bernardo, Mario Univ Naples Federico II Naples Italy Scuola Super Meridionale Naples Italy Univ Salerno Salerno Italy UCL London England Univ Bologna Bologna Italy
One of the major challenges in Deep Reinforcement learning for control is the need for extensive training to learn a policy. Motivated by this, we present the design of the control-Tutored Deep Q-Networks (CT-DQN) alg... 详细信息
来源: 评论
Full Gradient Deep Reinforcement learning for Average-Reward Criterion  5
Full Gradient Deep Reinforcement Learning for Average-Reward...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Pagare, Tejas Borkar, Vivek Avrachenkov, Konstantin Indian Inst Technol Dept Elect Engn Mumbai 400076 Maharashtra India INRIA Sophia Antipolis 2004 Route LuciolesBP93 F-06902 Valbonne France
We extend the provably convergent Full Gradient DQN algorithm for discounted reward Markov decision processes from Avrachenkov et al. (2021) to average reward problems. We experimentally compare widely used RVI Q-lear... 详细信息
来源: 评论
CLAS: Coordinating Multi-Robot Manipulation with Central Latent Action Spaces  5
CLAS: Coordinating Multi-Robot Manipulation with Central Lat...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Aljalbout, Elie Karl, Maximilian van der Smagt, Patrick Volkswagen Grp Machine Learning Res Lab Munich Germany
Multi-robot manipulation tasks involve various control entities that can be separated into dynamically independent parts. A typical example of such real-world tasks is dual-arm manipulation. learning to naively solve ... 详细信息
来源: 评论
Agile Catching with Whole-Body MPC and Blackbox Policy learning  5
Agile Catching with Whole-Body MPC and Blackbox Policy Learn...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Abeyruwan, Saminda Bewley, Alex Boffi, Nicholas M. Choromanski, Krzysztof D'Ambrosio, David Jain, Deepali Sanketi, Pannag Shankar, Anish Sindhwani, Vikas Singh, Sumeet Slotine, Jean-Jacques Tu, Stephen Google Robot Mountain View CA 94043 USA
We address a benchmark task in agile robotics: catching objects thrown at high-speed. this is a challenging task that involves tracking, intercepting, and cradling a thrown object with access only to visual observatio... 详细信息
来源: 评论
the Impact of the Geometric Properties of the Constraint Set in Safe Optimization with Bandit Feedback  5
The Impact of the Geometric Properties of the Constraint Set...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Hutchinson, Spencer Turan, Berkay Alizadeh, Mahnoosh Univ Calif Santa Barbara Santa Barbara CA 93106 USA
We consider a safe optimization problem with bandit feedback in which an agent sequentially chooses actions and observes responses from the environment, with the goal of maximizing an arbitrary function of the respons... 详细信息
来源: 评论
Lie Group Forced Variational Integrator Networks for learning and control of Robot Systems  5
Lie Group Forced Variational Integrator Networks for Learnin...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Duruisseaux, Valentin Duong, thai Leok, Melvin Atanasov, Nikolay Univ Calif San Diego Dept Math La Jolla CA 92093 USA Univ Calif San Diego Dept Elect & Comp Engn La Jolla CA 92093 USA
Incorporating prior knowledge of physics laws and structural properties of dynamical systems into the design of deep learning architectures has proven to be a powerful technique for improving their computational effic... 详细信息
来源: 评论
Satellite Navigation and Coordination with Limited Information Sharing  5
Satellite Navigation and Coordination with Limited Informati...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Dolan, Sydney Nayak, Siddharth Balakrishnan, Hamsa MIT Cambridge MA 02139 USA
We explore space traffic management as an application of collision-free navigation in multi-agent systems where vehicles have limited observation and communication ranges. We investigate the effectiveness of transferr... 详细信息
来源: 评论
Can learning Deteriorate control? Analyzing Computational Delays in Gaussian Process-Based Event-Triggered Online learning  5
Can Learning Deteriorate Control? Analyzing Computational De...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Dai, Xiaobing Lederer, Armin Yang, Zewen Hirche, Sandra Tech Univ Munich Chair Informat Oriented Control D-80333 Munich Germany
When the dynamics of systems are unknown, supervised machine learning techniques are commonly employed to infer models from data. Gaussian process (GP) regression is a particularly popular learning method for this pur... 详细信息
来源: 评论
Filter-Aware Model-Predictive control  5
Filter-Aware Model-Predictive Control
收藏 引用
5th annual conference on learning for dynamics and control
作者: Kayalibay, Baris Mirchev, Atanas Agha, Ahmed van der Smagt, Patrick Bayer, Justin Volkswagen Grp Machine Learning Res Lab Munich Germany
Partially-observable problems pose a trade-off between reducing costs and gathering information. they can be solved optimally by planning in belief space, but that is often prohibitively expensive. Model-predictive co... 详细信息
来源: 评论