咨询与建议

限定检索结果

文献类型

  • 452 篇 会议
  • 27 篇 期刊文献

馆藏范围

  • 479 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 376 篇 工学
    • 255 篇 计算机科学与技术...
    • 233 篇 控制科学与工程
    • 86 篇 电气工程
    • 73 篇 软件工程
    • 51 篇 机械工程
    • 30 篇 石油与天然气工程
    • 20 篇 生物工程
    • 17 篇 信息与通信工程
    • 15 篇 力学(可授工学、理...
    • 12 篇 生物医学工程(可授...
    • 9 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 交通运输工程
    • 6 篇 材料科学与工程(可...
    • 6 篇 土木工程
    • 6 篇 安全科学与工程
    • 5 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 建筑学
    • 4 篇 船舶与海洋工程
  • 84 篇 理学
    • 40 篇 数学
    • 36 篇 生物学
    • 28 篇 系统科学
    • 20 篇 统计学(可授理学、...
    • 15 篇 物理学
    • 5 篇 化学
  • 33 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 10 篇 教育学
    • 10 篇 教育学
  • 9 篇 医学
  • 3 篇 军事学
  • 2 篇 经济学
  • 2 篇 法学
  • 1 篇 农学

主题

  • 38 篇 reinforcement le...
  • 21 篇 machine learning
  • 18 篇 neural networks
  • 15 篇 heuristic algori...
  • 13 篇 adaptive control
  • 12 篇 vehicle dynamics
  • 12 篇 control systems
  • 12 篇 dynamics
  • 10 篇 optimization
  • 10 篇 sliding mode con...
  • 10 篇 trajectory
  • 10 篇 deep reinforceme...
  • 9 篇 optimal control
  • 9 篇 robustness
  • 8 篇 deep learning
  • 8 篇 simulation
  • 8 篇 robotics
  • 7 篇 model predictive...
  • 7 篇 nonlinear system...
  • 7 篇 data models

机构

  • 5 篇 mit cambridge ma...
  • 4 篇 georgia inst tec...
  • 4 篇 univ calif berke...
  • 3 篇 univ calif san d...
  • 3 篇 univ penn philad...
  • 3 篇 stanford univ st...
  • 3 篇 univ michigan de...
  • 2 篇 ohio state univ ...
  • 2 篇 duke univ durham...
  • 2 篇 natl renewable e...
  • 2 篇 school of electr...
  • 2 篇 katholieke univ ...
  • 2 篇 univ penn dept e...
  • 2 篇 durban univ tech...
  • 2 篇 delft univ techn...
  • 2 篇 college of autom...
  • 2 篇 univ bonn autono...
  • 2 篇 zhejiang univ de...
  • 2 篇 school of law he...
  • 2 篇 carnegie mellon ...

作者

  • 3 篇 vamvoudakis kyri...
  • 3 篇 zavlanos michael...
  • 3 篇 zhang baosen
  • 3 篇 li na
  • 3 篇 wang cong
  • 3 篇 hazan elad
  • 3 篇 cong wang
  • 2 篇 gokdag mustafa
  • 2 篇 soffker dirk
  • 2 篇 michiels w.
  • 2 篇 nakahira yorie
  • 2 篇 cui wenqi
  • 2 篇 zico kolter j.
  • 2 篇 tomizuka masayos...
  • 2 篇 fradkov alexande...
  • 2 篇 pravesh
  • 2 篇 levine sergey
  • 2 篇 minasyan edgar
  • 2 篇 pavlichenko dmyt...
  • 2 篇 fan chuchu

语言

  • 466 篇 英文
  • 9 篇 其他
  • 5 篇 中文
检索条件"任意字段=5th Annual Conference on Learning for Dynamics and Control"
479 条 记 录,以下是41-50 订阅
排序:
Continuous Versatile Jumping Using Learned Action Residuals  5
Continuous Versatile Jumping Using Learned Action Residuals
收藏 引用
5th annual conference on learning for dynamics and control
作者: Yang, Yuxiang Meng, Xiangyun Yu, Wenhao Zhang, Tingnan Tan, Jie Boots, Byron Univ Washington Seattle WA 98195 USA Google Robot Mountain View CA USA
Jumping is essential for legged robots to traverse through difficult terrains. In this work, we propose a hierarchical framework that combines optimal control and reinforcement learning to learn continuous jumping mot... 详细信息
来源: 评论
Can Direct Latent Model learning Solve Linear Quadratic Gaussian control?  5
Can Direct Latent Model Learning Solve Linear Quadratic Gaus...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Tian, Yi Zhang, Kaiqing Tedrake, Russ Sra, Suvrit MIT Cambridge MA 02139 USA Univ Maryland College Pk MD USA
We study the task of learning state representations from potentially high-dimensional observations, with the goal of controlling an unknown partially observable system. We pursue a direct latent model learning approac... 详细信息
来源: 评论
learning "Look-Ahead" Nonlocal Traffic dynamics in a Ring Road  6
Learning "Look-Ahead" Nonlocal Traffic Dynamics in a Ring Ro...
收藏 引用
6th annual learning for dynamics and control conference
作者: Zhao, Chenguang Yu, Huan Hong Kong Univ Sci & Technol Thrust Intelligent Transportat Guangzhou Peoples R China Hong Kong Univ Sci & Technol Dept Civil & Environm Engn Hong Kong Peoples R China
the macroscopic traffic flow model is widely used for traffic control and management. To incorporate drivers' anticipative behaviors and to remove impractical speed discontinuity inherent in the classic Lighthill-... 详细信息
来源: 评论
Operator learning for Nonlinear Adaptive control  5
Operator Learning for Nonlinear Adaptive Control
收藏 引用
5th annual conference on learning for dynamics and control
作者: Bhan, Luke Shi, Yuanyuan Krstic, Miroslav Univ Calif San Diego Dept Elect & Comp Engn San Diego CA 92093 USA Univ Calif San Diego Dept Mech & Aerosp Engn San Diego CA USA
In this work, we propose an operator learning framework for accelerating nonlinear adaptive control. We define three operator mappings in adaptive control-the parameter identifier operator, the controller gain operato... 详细信息
来源: 评论
Policy Gradient Play with Networked Agents in Markov Potential Games  5
Policy Gradient Play with Networked Agents in Markov Potenti...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Aydin, Sarper Eksin, Ceyhun Texas A&M Univ College Stn TX 77843 USA
We introduce a distributed policy gradient play algorithm with networked agents playing Markov potential games. Agents have rewards at each stage of the game, that depend on the joint actions of agents given a common ... 详细信息
来源: 评论
Failing with Grace: learning Neural Network controllers that are Boundedly Unsafe  5
Failing with Grace: Learning Neural Network Controllers that...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Vlantis, Panagiotis Bridgeman, Leila J. Zavlanos, Michael M. Duke Univ Durham NC 27706 USA
this work considers the problem of learning a feed-forward neural network controller to safely steer an arbitrarily shaped planar robot in a compact, obstacle-occluded workspace. When training neural network controlle... 详细信息
来源: 评论
Modified Policy Iteration for Exponential Cost Risk Sensitive MDPs  5
Modified Policy Iteration for Exponential Cost Risk Sensitiv...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Murthy, Yashaswini Moharrami, Mehrdad Srikant, R. Univ Illinois Champaign IL 61820 USA
Modified policy iteration (MPI) also known as optimistic policy iteration is at the core of many reinforcement learning algorithms. It works by combining elements of policy iteration and value iteration. the convergen... 详细信息
来源: 评论
Contrastive Example-Based control  5
Contrastive Example-Based Control
收藏 引用
5th annual conference on learning for dynamics and control
作者: Hatch, Kyle Eysenbach, Benjamin Rafailov, Rafael Yu, Tianhe Salakhutdinov, Ruslan Levine, Sergey Finn, Chelsea Stanford Univ Dept Comp Sci Stanford CA 94305 USA Carnegie Mellon Univ Machine Learning Dept Pittsburgh PA USA Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA USA
While many real-world problems that might benefit from reinforcement learning, these problems rarely fit into the MDP mold: interacting with the environment is often expensive and specifying reward functions is challe... 详细信息
来源: 评论
Roll-Drop: accounting for observation noise with a single parameter  5
Roll-Drop: accounting for observation noise with a single pa...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Campanaro, Luigi De Martini, Daniele Gangapurwala, Siddhant Merkt, Wolfgang Havoutis, Ioannis Univ Oxford Dept Engn Sci Oxford England
this paper proposes a simple strategy for sim-to-real in Deep-Reinforcement learning (DRL) - called Roll-Drop - that uses dropout during simulation to account for observation noise during deployment without explicitly... 详细信息
来源: 评论
Regret Analysis of Online LQR control via Trajectory Prediction and Tracking  5
Regret Analysis of Online LQR Control via Trajectory Predict...
收藏 引用
5th annual conference on learning for dynamics and control
作者: Chen, Yitian Molloy, Timothy L. Summers, Tyler Shames, Iman Australian Natl Univ CIICADA Lab Canberra ACT Australia Univ Texas Dallas Richardson TX 75083 USA
In this paper, we propose and analyse a new method for online linear quadratic regulator (LQR) control with a priori unknown time-varying cost matrices. the cost matrices are revealed sequentially with the potential f... 详细信息
来源: 评论