咨询与建议

限定检索结果

文献类型

  • 11 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 12 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 工学
    • 9 篇 计算机科学与技术...
    • 1 篇 电气工程
    • 1 篇 控制科学与工程
    • 1 篇 石油与天然气工程
    • 1 篇 软件工程
  • 3 篇 理学
    • 3 篇 数学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 2 篇 machine learning
  • 1 篇 hpx
  • 1 篇 parallelization
  • 1 篇 scalability
  • 1 篇 reinforcement le...
  • 1 篇 rendering (compu...
  • 1 篇 amt
  • 1 篇 deep learning
  • 1 篇 task analysis
  • 1 篇 behavior analysi...
  • 1 篇 path-tracing
  • 1 篇 second-order
  • 1 篇 learning latent ...
  • 1 篇 parallel word2ve...
  • 1 篇 couplings
  • 1 篇 vtkm
  • 1 篇 neural networks
  • 1 篇 neural architect...
  • 1 篇 oils
  • 1 篇 rocks

机构

  • 2 篇 offenburg univ i...
  • 2 篇 fraunhofer ctr m...
  • 2 篇 fraunhofer itwm ...
  • 1 篇 oak ridge nation...
  • 1 篇 argonne natl lab...
  • 1 篇 oak ridge nation...
  • 1 篇 nvidia nice
  • 1 篇 univ utah sch co...
  • 1 篇 university of ut...
  • 1 篇 polytech montrea...
  • 1 篇 tu kaiserslauter...
  • 1 篇 univ edinburgh e...
  • 1 篇 epcc the univers...
  • 1 篇 univ utah sch co...
  • 1 篇 louisiana state ...
  • 1 篇 oak ridge natl l...
  • 1 篇 tu kaiserslauter...
  • 1 篇 univ tennessee k...
  • 1 篇 cognit geol edin...
  • 1 篇 edinburgh parall...

作者

  • 2 篇 pfreundt franz-j...
  • 2 篇 gauger nicolas r...
  • 2 篇 keuper janis
  • 1 篇 mueller sabine
  • 1 篇 stewart mike
  • 1 篇 sukumaran-rajam ...
  • 1 篇 kaiser hartmut
  • 1 篇 anna roubickova
  • 1 篇 kim mark
  • 1 篇 mark kim
  • 1 篇 nick brown
  • 1 篇 heinrich greg
  • 1 篇 nicolae bogdan
  • 1 篇 newman-griffis d...
  • 1 篇 leventhal samuel
  • 1 篇 pugmire david
  • 1 篇 lemoine adrian s...
  • 1 篇 shirzad shahrzad
  • 1 篇 macgregor lucy
  • 1 篇 laberge gabriel

语言

  • 12 篇 英文
检索条件"任意字段=5th IEEE/ACM Workshop on Machine Learning in HPC Environments, MLHPC 2019"
12 条 记 录,以下是11-20 订阅
排序:
PAVE: An In Situ Framework for Scientific Visualization and machine learning Coupling
PAVE: An In Situ Framework for Scientific Visualization and ...
收藏 引用
ieee/acm International workshop on Data Analysis and Reduction for Big Scientific Data (DRBSD-5)
作者: Samuel Leventhal Mark Kim David Pugmire University of Utah School of Computing Scientific Computing and Imaging Institute Salt Lake City UT USA Oak Ridge National Laboratory Oak Ridge TN USA
machine learning (ML) has emerged as a tool for understanding data at scale. However, this new methodology comes at a cost because ML requires the use of even more hpc resources to generate ML algorithms. In addition ... 详细信息
来源: 评论
Using machine learning to Reduce Ensembles of Geological Models for Oil and Gas Exploration
Using Machine Learning to Reduce Ensembles of Geological Mod...
收藏 引用
ieee/acm International workshop on Data Analysis and Reduction for Big Scientific Data (DRBSD-5)
作者: Anna Roubickova Nick Brown Oliver Brown Edinburgh Parallel Computing Centre EPCC The University of Edinburgh
Exploration using borehole drilling is a key activity in determining the most appropriate locations for the petroleum industry to develop oil fields. However estimating the amount of Oil In Place (OIP) relies on compu... 详细信息
来源: 评论