咨询与建议

限定检索结果

文献类型

  • 133 篇 会议
  • 1 册 图书

馆藏范围

  • 134 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 71 篇 工学
    • 55 篇 计算机科学与技术...
    • 44 篇 软件工程
    • 19 篇 电气工程
    • 16 篇 控制科学与工程
    • 7 篇 信息与通信工程
    • 6 篇 生物工程
    • 4 篇 仪器科学与技术
    • 4 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 动力工程及工程热...
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 建筑学
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
    • 2 篇 网络空间安全
  • 17 篇 医学
    • 16 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 14 篇 理学
    • 8 篇 数学
    • 6 篇 物理学
    • 6 篇 生物学
    • 4 篇 系统科学
    • 4 篇 统计学(可授理学、...
    • 3 篇 化学
  • 10 篇 管理学
    • 7 篇 管理科学与工程(可...
  • 3 篇 教育学
    • 3 篇 教育学

主题

  • 75 篇 pattern recognit...
  • 24 篇 machine learning
  • 20 篇 feature extracti...
  • 16 篇 training
  • 14 篇 accuracy
  • 12 篇 deep learning
  • 12 篇 data models
  • 7 篇 object detection
  • 7 篇 large language m...
  • 7 篇 predictive model...
  • 7 篇 real-time system...
  • 7 篇 convolutional ne...
  • 6 篇 computational mo...
  • 6 篇 robustness
  • 6 篇 attention mechan...
  • 5 篇 pattern classifi...
  • 5 篇 natural language...
  • 5 篇 optimization
  • 5 篇 visualization
  • 5 篇 machine learning...

机构

  • 5 篇 school of comput...
  • 5 篇 school of inform...
  • 3 篇 college of elect...
  • 2 篇 northeastern uni...
  • 2 篇 dalian natl univ...
  • 2 篇 college of compu...
  • 2 篇 college of compu...
  • 2 篇 lovely professio...
  • 1 篇 friedrich-alexan...
  • 1 篇 independent rese...
  • 1 篇 laboratory of me...
  • 1 篇 space technology...
  • 1 篇 school of mathem...
  • 1 篇 intelligent cons...
  • 1 篇 univ patras dept...
  • 1 篇 harbin universit...
  • 1 篇 department of co...
  • 1 篇 napier univ sch ...
  • 1 篇 school of inform...
  • 1 篇 sudan university...

作者

  • 5 篇 askar hamdulla
  • 4 篇 hankiz yilahun
  • 3 篇 nuo qun
  • 3 篇 qijun zhao
  • 2 篇 tashi nyima
  • 2 篇 sharma ajay
  • 2 篇 feng chang-jian
  • 2 篇 sharma shamneesh
  • 2 篇 jin yang
  • 2 篇 gochhait saikat
  • 2 篇 yurong li
  • 2 篇 tian jin-wen
  • 2 篇 dingguo gao
  • 2 篇 chen guang
  • 2 篇 kang jing
  • 2 篇 xinke zhao
  • 2 篇 guo jun
  • 2 篇 rong chen
  • 2 篇 hu hong-ying
  • 2 篇 gadeng lobsang

语言

  • 128 篇 英文
  • 6 篇 其他
检索条件"任意字段=5th IEEE International Conference on Pattern Recognition and Machine Learning, PRML 2024"
134 条 记 录,以下是121-130 订阅
排序:
Condition monitoring using pattern recognition techniques on data from acoustic emissions
Condition monitoring using pattern recognition techniques on...
收藏 引用
5th international conference on machine learning and Applications
作者: Yella, Siril Gupta, Naren Dougherty, Mark Dalarna Univ Dept Comp Engn Borlange Sweden Napier Univ Sch Engn Edinburgh EH14 1DJ Midlothian Scotland
Condition monitoring applications deploying the usage of impact acoustic techniques are mostly done intuitively by skilled personnel. In this article, a pattern recognition approach is taken to automate such intuitive... 详细信息
来源: 评论
An RBF network approach to flatness pattern recognition based on SVM learning
An RBF network approach to flatness pattern recognition base...
收藏 引用
5th international conference on machine learning and Cybernetics
作者: He, Hai-Tao Li, Nan Yanshan Univ Coll Informat Sci & Engn Qinhuangdao 066004 Peoples R China
In the traditional method of flatness pattern recognition known as neural network with a changing topological configuration, slow convergence and local minimum were observed. Moreover, the process of experimenting the... 详细信息
来源: 评论
Design and implementation of modern elevator group control system
Design and implementation of modern elevator group control s...
收藏 引用
5th international conference on machine learning and Cybernetics
作者: Chen, Zhi-Ming Luo, Fei Xu, Yu-Ge Cao, Jian-Zhong South China Univ Technol Coll Automat Sci & Engn Guangzhou 510640 Guangdong Peoples R China
the design and implementation of a modern elevator group control system (EGCS) is introduced in this paper. the basic considerations of designing an EGCS are discussed, including related system parameters, evaluation ... 详细信息
来源: 评论
A new recognition method for the handwritten manchu character unit
A new recognition method for the handwritten manchu characte...
收藏 引用
5th international conference on machine learning and Cybernetics
作者: Zhang, Guang-Yuan Li, Jing-Jiao Wang, Ai-Xia Shenyang Univ Sch Informat Engn Shenyang 110044 Peoples R China Northeastern Univ Sch Informat Sci & Engn Shenyang 110004 Peoples R China
the Manchu character recognition method based on Manchu character unit is an efficient method. In this method, the recognition accuracy rate of Manchu character unit has great influence on the final recognition result... 详细信息
来源: 评论
Fuzzy neural hybrid system for cutting tool condition monitoring
Fuzzy neural hybrid system for cutting tool condition monito...
收藏 引用
5th international conference on machine learning and Cybernetics
作者: Fu, Pan Hope, A. D. Southwest JiaoTong Univ Fac Mech Engn Chengdu 610031 Peoples R China Southampton Inst Fac Syst Engn Southampton SO14 OYN Hants England
In manufacturing processes it is very important that the condition of the cutting tool, particularly the indications when it should be changed, can be monitored. Cutting tool condition monitoring is a very complex pro... 详细信息
来源: 评论
Information classified recognition method based on fuzzy control
Information classified recognition method based on fuzzy con...
收藏 引用
5th international conference on machine learning and Cybernetics
作者: Ding, Shi-Fei Shi, Zhong-Zhi Zhu, Xi-Jun Shandong Agr Univ Coll Informat Sci & Engn Tai An 271018 Peoples R China Acad Sinica Comp Technol Inst Key Lab Intelligent Informat Proc Beijing 100080 Peoples R China Qingdao Technol Univ Sch Sci Qingdao 266033 Peoples R China
In this paper, an information pattern recognition method based on fuzzy control is set up. On one hand, the modeling method of fuzzy information classified recognition pattern has been established. On the other hand, ... 详细信息
来源: 评论
TARGET recognition USING BAYESIAN DATA FUSION MEthOD
TARGET RECOGNITION USING BAYESIAN DATA FUSION METHOD
收藏 引用
5th international conference on machine learning and Cybernetics
作者: Sun, Yu-Qiu Tian, Jin-Wen Liu, Jian Yangtze Univ Sch Informat & Math Jinzhou 434023 Peoples R China Huazhong Univ Sci & Technol Inst Pattern Recognit & Artificial Intelligence State Educ Commiss Key Lab Image Proc & Intelligent Control Wuhan 430074 Peoples R China Huazhong Univ Sci & Technol Dept Elect Informat & Energy State Educ Commiss Key Lab Image Proc & Intelligent Control Wuhan Peoples R China
Multisensor information plays an important pole in the target recognition and other application fields. Fusion performance is tightly depended on the fusion level selectes and the approach used. Feature level fusion i... 详细信息
来源: 评论
A version of Isomap with explicit mapping
A version of Isomap with explicit mapping
收藏 引用
5th international conference on machine learning and Cybernetics
作者: Li, Chun-Guang Guo, Jun Chen, Guang Nie, Xiang-Fei Yang, Zhen Beijing Univ Posts & Telecommun Pattern Recognit & Intelligent Syst Lab Sch Informat Engn Beijing 100876 Peoples R China
Recently several manifold learning algorithms have been presented for nonlinear dimensionality reduction. Isomap is one of them. However, Isomap suffers from a deficiency that it does not give an explicit mapping func... 详细信息
来源: 评论
the research on an adaptive k-nearest neighbors classifier
The research on an adaptive k-nearest neighbors classifier
收藏 引用
5th international conference on machine learning and Cybernetics
作者: Yu, Xiao-Gao Yu, Xiao-Peng Hubei Univ Econ Wuhan 430205 Peoples R China Wuhan Univ Wuhan 430072 Peoples R China
k-Nearest neighbor (KNNC) classifier is the most popular non-parametric classifier. But it requires much classification time to search k nearest neighbors of an unlabelled object point, which badly affects its efficie... 详细信息
来源: 评论
AN IMPLEMENTATION FRAMEWORK FOR KERNEL MEthODS WIth HIGH-DIMENSIONAL patternS
<bold>AN IMPLEMENTATION FRAMEWORK FOR KERNEL METHODS WITH HI...
收藏 引用
5th international conference on machine learning and Cybernetics
作者: Xu, Yong Sun, Bin Zhang, Chong-Yang Jin, Zhong Liu, Chuan-Cai Yang, Jing-Yu Harbin Inst Technol Shenzhen Grad Sch Biocomp Res Ctr Shenzhen 518055 Peoples R China Nanjing Univ Sci & Technol Dept Comp Sci & Technol Nanjing 210094 Peoples R China
As nonlinear feature extraction methods, kernel methods have been widely applied in pattern recognition. However, for high dimensional data such as face images, a kernel method will correspond to a high computational ... 详细信息
来源: 评论