咨询与建议

限定检索结果

文献类型

  • 177 篇 会议
  • 4 册 图书
  • 1 篇 期刊文献

馆藏范围

  • 182 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 146 篇 工学
    • 121 篇 计算机科学与技术...
    • 59 篇 软件工程
    • 21 篇 控制科学与工程
    • 16 篇 信息与通信工程
    • 12 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 6 篇 机械工程
    • 5 篇 光学工程
    • 5 篇 电气工程
    • 5 篇 安全科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 电子科学与技术(可...
    • 4 篇 交通运输工程
    • 4 篇 农业工程
    • 3 篇 动力工程及工程热...
    • 3 篇 化学工程与技术
  • 59 篇 理学
    • 40 篇 数学
    • 16 篇 生物学
    • 11 篇 统计学(可授理学、...
    • 7 篇 物理学
    • 4 篇 化学
    • 3 篇 系统科学
  • 29 篇 管理学
    • 19 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 9 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 6 篇 农学
    • 6 篇 作物学
  • 2 篇 教育学
  • 1 篇 经济学

主题

  • 13 篇 deep learning
  • 12 篇 machine learning
  • 10 篇 data mining
  • 7 篇 real-time system...
  • 7 篇 convolutional ne...
  • 6 篇 clustering algor...
  • 5 篇 feature extracti...
  • 5 篇 artificial intel...
  • 5 篇 data models
  • 4 篇 database managem...
  • 4 篇 accuracy
  • 4 篇 forecasting
  • 3 篇 internet of thin...
  • 3 篇 fuzzy sets
  • 3 篇 support vector m...
  • 3 篇 automation
  • 3 篇 manuals
  • 3 篇 visualization
  • 3 篇 decision making
  • 3 篇 classification

机构

  • 3 篇 school of comput...
  • 2 篇 monash universit...
  • 2 篇 chengdu universi...
  • 2 篇 information tech...
  • 2 篇 department of ma...
  • 2 篇 ajou univ div el...
  • 2 篇 dept. of informa...
  • 2 篇 department of da...
  • 2 篇 intelligent comp...
  • 2 篇 telkom universit...
  • 2 篇 univ london roya...
  • 2 篇 department of in...
  • 2 篇 naval research l...
  • 2 篇 department of co...
  • 2 篇 the university o...
  • 2 篇 school of comput...
  • 2 篇 faculty of scien...
  • 2 篇 tsing hua univ s...
  • 2 篇 ajou univ grad s...
  • 2 篇 department of ma...

作者

  • 4 篇 yin hujun
  • 3 篇 lee yuh-jye
  • 3 篇 zhang byoung-tak
  • 3 篇 taniar david
  • 3 篇 huang de-shuang
  • 2 篇 sun jg
  • 2 篇 chan tony f.
  • 2 篇 horváth tomáš
  • 2 篇 pao hsing-kuo
  • 2 篇 liu yang
  • 2 篇 ng michael k.
  • 2 篇 tashu tsegaye mi...
  • 2 篇 ahmad k
  • 2 篇 fakhrurroja hani...
  • 2 篇 p. vishnu kumar
  • 2 篇 bellotti t
  • 2 篇 luo zy
  • 2 篇 hujun yin
  • 2 篇 wu edmond h.
  • 2 篇 colin fyfe

语言

  • 174 篇 英文
  • 5 篇 其他
  • 3 篇 中文
检索条件"任意字段=5th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2004"
182 条 记 录,以下是11-20 订阅
排序:
A Smart IoT-Enabled Wildfire Monitoring and Early Detection System using Convolutional Neural Networks and Sensor data Analysis
A Smart IoT-Enabled Wildfire Monitoring and Early Detection ...
收藏 引用
Trends in Material Science and Inventive Materials (ICTMIM), international conference on
作者: U.V. Anbazhagu A. Alice Blessie R. Santhana Krishnan G. Yamini J. Relin Francis Raj P. Sundaravadivel Department of Computing Technologies School of Computing College of Engineering and Technology Faculty of Engineering and Technology SRM Institute of Science and Technology Chennai India Department of Electronics and Communication Engineering Government College of Engineering Tirunelveli India Department of Electronics and Communication Engineering SCAD College of Engineering and Technology Cheranmhadevi India Department of English Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology Chennai India Department of Electronics and Communication Engineering Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India Department of Artificial Intelligence and Machine Learning Saveetha Engineering College Chennai India
Wildfires pose a significant threat to ecosystems, biodiversity, and human settlements, with climate change and deforestation exacerbating the frequency and intensity. Conventional forest fire detection methods, inclu... 详细信息
来源: 评论
Automatic video shot boundary detection using machine learning
收藏 引用
5th international conference on intelligent data engineering and automated learning (ideal 2004)
作者: Ren, W Singh, S Univ Exeter Dept Comp Sci ATR Lab Exeter EX4 4QF Devon England
In this paper we present a machine learning system that can accurately predict the transitions between frames in a video sequence. We propose a set of novel features and describe how to use dominant features based on ... 详细信息
来源: 评论
Dimensionality reduction with image data
收藏 引用
5th international conference on intelligent data engineering and automated learning (ideal 2004)
作者: Benito, M Peña, D Univ Carlos III Madrid E-28903 Getafe Spain
A common objective in image analysis is dimensionality reduction. the most often used data-exploratory technique with this objective is principal component analysis. We propose a new method based on the projection of ... 详细信息
来源: 评论
Mining large engineering data sets on the grid using AURA
收藏 引用
5th international conference on intelligent data engineering and automated learning (ideal 2004)
作者: Liang, B Austin, J Univ York Dept Comp Sci York YO10 5DD N Yorkshire England
AURA (Advanced Uncertain Reasoning Architecture) is a parallel pattern matching technology intended for high-speed approximate search and match operations on large unstructured datasets. this paper represents how the ... 详细信息
来源: 评论
DIVACE: Diverse and accurate ensemble learning algorithm
收藏 引用
5th international conference on intelligent data engineering and automated learning (ideal 2004)
作者: Chandra, A Yao, X Univ Birmingham CERCIA Sch Comp Sci Birmingham B15 2TT W Midlands England
In order for a neural network ensemble to generalise properly, two factors are considered vital. One is the diversity and the other is the accuracy of the networks that comprise the ensemble. there exists a tradeoff a... 详细信息
来源: 评论
Qualified predictions for proteomics pattern diagnostics with confidence machines
收藏 引用
5th international conference on intelligent data engineering and automated learning (ideal 2004)
作者: Luo, ZY Bellotti, T Gammerman, A Univ London Royal Holloway & Bedford New Coll Comp Learning Res Ctr Egham TW20 0EX Surrey England
In this paper, we focus on the problem of prediction with confidence and describe the recently developed transductive confidence machines (TCM). TCM allows us to make predictions within predefined confidence levels, t... 详细信息
来源: 评论
Locally tuned general regression for learning mixture models using small incomplete data sets with outliers and overlapping classes
收藏 引用
5th international conference on intelligent data engineering and automated learning (ideal 2004)
作者: Rafat, A Univ Exeter Dept Comp Sci Exeter EX4 4QF Devon England
Finite mixture models are commonly used in pattern recognition. Parameters of these models are usually estimated via the Expectation Maximization algorithm. this algorithm is modified earlier to handle incomplete data... 详细信息
来源: 评论
In-situ learning in multi-net systems
收藏 引用
5th international conference on intelligent data engineering and automated learning (ideal 2004)
作者: Casey, M Ahmad, K Univ Surrey Sch Elect & Phys Sci Dept Comp Guildford GU2 7XH Surrey England
Multiple classifier systems based on neural networks can give proved generalisation performance as compared with single classifier systems. We examine collaboration in multi-net systems through in-situ learning explor... 详细信息
来源: 评论
An information theoretic optimal classifier for semi-supervised learning
收藏 引用
5th international conference on intelligent data engineering and automated learning (ideal 2004)
作者: Yin, K Davidson, I SUNY Albany Dept Comp Sci Albany NY 12222 USA
Model uncertainty refers to the risk associated with basing prediction on only one model. In semi-supervised learning, this uncertainty is greater than in supervised learning (for the same total number of instances) g... 详细信息
来源: 评论
Combining local and global models to capture fast and slow dynamics in time series data
收藏 引用
5th international conference on intelligent data engineering and automated learning (ideal 2004)
作者: Small, M Hong Kong Polytech Univ Hong Kong Hong Kong Peoples R China
Many time series exhibit dynamics over vastly different time scales. the standard way to capture this behavior is to assume that the slow dynamics are a "trend", to de-trend the data, and then to model the f... 详细信息
来源: 评论