咨询与建议

限定检索结果

文献类型

  • 2,966 篇 会议
  • 174 册 图书
  • 25 篇 期刊文献

馆藏范围

  • 3,164 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,043 篇 工学
    • 1,824 篇 计算机科学与技术...
    • 958 篇 软件工程
    • 331 篇 电气工程
    • 314 篇 信息与通信工程
    • 214 篇 控制科学与工程
    • 207 篇 生物工程
    • 149 篇 生物医学工程(可授...
    • 71 篇 光学工程
    • 64 篇 机械工程
    • 62 篇 化学工程与技术
    • 51 篇 电子科学与技术(可...
    • 48 篇 仪器科学与技术
    • 46 篇 安全科学与工程
    • 36 篇 交通运输工程
  • 649 篇 理学
    • 353 篇 数学
    • 245 篇 生物学
    • 139 篇 物理学
    • 135 篇 统计学(可授理学、...
    • 95 篇 系统科学
    • 63 篇 化学
  • 408 篇 管理学
    • 244 篇 图书情报与档案管...
    • 182 篇 管理科学与工程(可...
    • 83 篇 工商管理
  • 262 篇 医学
    • 241 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 74 篇 药学(可授医学、理...
    • 40 篇 公共卫生与预防医...
  • 46 篇 法学
    • 42 篇 社会学
  • 38 篇 教育学
    • 32 篇 教育学
  • 33 篇 经济学
    • 31 篇 应用经济学
  • 23 篇 农学
  • 6 篇 艺术学
  • 4 篇 文学

主题

  • 572 篇 machine learning
  • 563 篇 data mining
  • 320 篇 pattern recognit...
  • 209 篇 deep learning
  • 201 篇 feature extracti...
  • 154 篇 support vector m...
  • 145 篇 artificial intel...
  • 128 篇 machine learning...
  • 120 篇 training
  • 117 篇 accuracy
  • 90 篇 data models
  • 89 篇 data mining and ...
  • 71 篇 neural networks
  • 71 篇 classification
  • 67 篇 predictive model...
  • 66 篇 face recognition
  • 61 篇 learning systems
  • 52 篇 computer imaging...
  • 50 篇 convolutional ne...
  • 48 篇 classification a...

机构

  • 9 篇 school of comput...
  • 9 篇 chinese academy ...
  • 8 篇 zhejiang univers...
  • 8 篇 chitkara univers...
  • 7 篇 guangdong univer...
  • 7 篇 school of inform...
  • 6 篇 xi'an university...
  • 6 篇 indian statistic...
  • 6 篇 central south un...
  • 6 篇 department of co...
  • 6 篇 unsw sydney
  • 6 篇 xi'an university...
  • 6 篇 southern univers...
  • 5 篇 study group aust...
  • 5 篇 peking universit...
  • 4 篇 centre for patte...
  • 4 篇 chongqing univer...
  • 4 篇 national laborat...
  • 4 篇 sun yat sen univ...
  • 4 篇 school of inform...

作者

  • 11 篇 de-shuang huang
  • 8 篇 petra perner
  • 7 篇 krasotkina olga
  • 7 篇 mottl vadim
  • 7 篇 ying tan
  • 6 篇 zheng-guang wu
  • 6 篇 ryszard tadeusie...
  • 6 篇 marcin korytkows...
  • 6 篇 phung dinh
  • 6 篇 venkatesh svetha
  • 6 篇 hongyi li
  • 6 篇 jacek m. zurada
  • 6 篇 chaojie li
  • 6 篇 biao luo
  • 6 篇 ilias maglogiann...
  • 6 篇 lotfi a. zadeh
  • 6 篇 leszek rutkowski
  • 6 篇 lazaros iliadis
  • 6 篇 long cheng
  • 5 篇 vitoantonio bevi...

语言

  • 2,999 篇 英文
  • 152 篇 其他
  • 25 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=5th International Conference on Machine Learning and Data Mining in Pattern Recognition"
3165 条 记 录,以下是2671-2680 订阅
排序:
A machine learning approach to test data generation: A case study in evaluation of gene finders  1
收藏 引用
5th international conference on machine learning and data mining in pattern recognition
作者: Christiansen, Henning Dahmcke, Christina Mackeprang Roskilde Univ Dept Commun Business & Informat Technol Res Grp PLIS POB 260 DK-4000 Roskilde Denmark Roskilde Univ Dept Sci Syst & Models DK-4000 Roskilde Denmark
Programs for gene prediction in computational biology are examples of systems for which the acquisition of authentic test data is difficult as these require years of extensive research. this has lead to test methods b... 详细信息
来源: 评论
A novel rule ordering approach in classification association rule mining  1
收藏 引用
5th international conference on machine learning and data mining in pattern recognition
作者: Wang, Yanbo J. Xin, Qin Coenen, Frans Univ Liverpool Dept Comp Sci Ashton Bldg Ashton St Liverpool L69 3BX Merseyside England Univ Bergen Dept Informat N-5020 Bergen Norway
A Classification Association Rule (CAR), a common type of mined knowledge in data mining, describes an implicative co-occurring relationship between a set of binary-valued data-attributes (items) and a pre-defined cla... 详细信息
来源: 评论
Transductive learning from relational data  1
收藏 引用
5th international conference on machine learning and data mining in pattern recognition
作者: Ceci, Michelangelo Appice, Annalisa Barile, Nicola Malerba, Donato Univ Bari Dipartimento Informat Via Orabona 4 I-70126 Bari Italy
Transduction is an inference mechanism "from particular to particular". Its application to classification tasks implies the use of both labeled (training) data and unlabeled (working) data to build a classif... 详细信息
来源: 评论
Alternative robust local embedding
Alternative robust local embedding
收藏 引用
5th international conference on Wavelet Analysis and pattern recognition
作者: Xue, Hui Chen, Song-Can Nanjing Univ Aeronaut & Astronaut Comp Sci & Engn Coll Nanjing 210016 Peoples R China
Dimensionality reduction is a significant problem in pattern recognition and thus arouses broad interest in the machine learning community. Different from the traditional linear dimensionality reduction methods, recen... 详细信息
来源: 评论
Material erosion rate model based on PCLS-SVM
Material erosion rate model based on PCLS-SVM
收藏 引用
5th international conference on Wavelet Analysis and pattern recognition
作者: Liu, De-Yong Fu, Dong-Mei Zhang, Biao Univ Sci & Technol Beijing Sch Informat Engn Beijing 100083 Peoples R China
Support vector machine (SVM) is a novel machine learning method based on statistical learning theory. A material erosion rate model based on principal component least square SVM (PCLS-SVM) is proposed PCA calculates p... 详细信息
来源: 评论
An incremental fuzzy decision tree classification method for mining data streams  1
收藏 引用
5th international conference on machine learning and data mining in pattern recognition
作者: Wang, Tao Li, Zhoujun Yan, Yuejin Chen, Huowang Natl Univ Def Technol Comp Sch Changsha 410073 Peoples R China Beihang Univ Sch Comp Sci & Engn Beijing 100083 Peoples R China
One of most important algorithms for mining data streams is VFDT. It uses Hoeffding inequality to achieve a probabilistic bound on the accuracy of the tree constructed. Gama et al. have extended VFDT in two directions... 详细信息
来源: 评论
pattern recognition of chatter gestation based on hybrid SOM/DHMM architecture
Pattern recognition of chatter gestation based on hybrid SOM...
收藏 引用
5th international conference on Wavelet Analysis and pattern recognition
作者: Kang, Jing Feng, Chang-Jian Shao, Qiang Hu, Hong-Ying Dalian Natl Univ Dept Mech Engn Dalian 116600 Peoples R China
To distinguish chatter gestation, chatter recognition based on hybrid SOM/DHMM is proposed for dynamic patterns of chatter gestation in cutting process. At first FFT features are extracted from the vibration signal of... 详细信息
来源: 评论
Efficient multi-method rule learning for pattern classification machine learning and data mining
收藏 引用
2nd international conference on pattern recognition and machine Intelligence
作者: Maiti, Chinmay Pal, Somnath Jadavpur Univ Dept Info Tech Kolkata 700032 W Bengal India Bengal Engn & Sci Univ Dept Comp Sci & Tech Howrah Bengal India
the work presented here focuses on combining multiple classifiers to form single classifier for pattern classification, machine learning for expert system, and data mining tasks. the basis of the combination is that e... 详细信息
来源: 评论
Research on tool failure prediction and wear monitoring based HMM pattern recognition theory
Research on tool failure prediction and wear monitoring base...
收藏 引用
5th international conference on Wavelet Analysis and pattern recognition
作者: Kang, Jing Kang, Ni Feng, Chang-Jian Hu, Hong-Ying Dalian Natl Univ Dept Mech Engn Dalian 116600 Peoples R China Southeast Univ Dept Instrument Sci & Engn Nanjing 210088 Peoples R China
A method of pattern recognition of tool wear based on Discrete Hidden Markov Models (DHMM) is proposed to monitor tool wear and to predict tool failure. At the first FFT features are extracted from the vibration signa... 详细信息
来源: 评论
A data-adaptive S-transform
A data-adaptive S-transform
收藏 引用
5th international conference on Wavelet Analysis and pattern recognition
作者: Man, Wei-Shi Wu, Bang-Yu Gao, Jing-Huai Geng, Yu Xian Jiaotong Univ Inst Microwave & Opt Commun Sch Elect & Informat Engn Xian 710049 Peoples R China
the S-transform is a time frequency analysis technique combining properties of the short-time Fourier and wavelet transforms. It provides frequency-dependent resolution while maintaining g a direct relationship with t... 详细信息
来源: 评论