咨询与建议

限定检索结果

文献类型

  • 2,658 篇 会议
  • 127 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 2,873 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,384 篇 工学
    • 2,166 篇 计算机科学与技术...
    • 1,124 篇 生物医学工程(可授...
    • 935 篇 软件工程
    • 550 篇 光学工程
    • 298 篇 生物工程
    • 268 篇 电气工程
    • 226 篇 电子科学与技术(可...
    • 183 篇 信息与通信工程
    • 164 篇 控制科学与工程
    • 84 篇 仪器科学与技术
    • 42 篇 核科学与技术
    • 30 篇 力学(可授工学、理...
    • 28 篇 化学工程与技术
    • 24 篇 安全科学与工程
    • 23 篇 机械工程
    • 23 篇 动力工程及工程热...
    • 20 篇 建筑学
  • 1,834 篇 医学
    • 1,359 篇 特种医学
    • 1,009 篇 临床医学
    • 402 篇 基础医学(可授医学...
    • 299 篇 药学(可授医学、理...
    • 209 篇 医学技术(可授医学...
    • 30 篇 公共卫生与预防医...
  • 692 篇 理学
    • 355 篇 数学
    • 354 篇 生物学
    • 329 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 45 篇 化学
  • 108 篇 管理学
    • 66 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
  • 9 篇 教育学
  • 7 篇 农学
  • 4 篇 经济学
  • 2 篇 法学

主题

  • 324 篇 image segmentati...
  • 127 篇 image registrati...
  • 110 篇 deep learning
  • 110 篇 magnetic resonan...
  • 109 篇 medical imaging
  • 65 篇 image enhancemen...
  • 62 篇 image reconstruc...
  • 59 篇 medical image se...
  • 57 篇 segmentation
  • 57 篇 artificial intel...
  • 56 篇 image processing...
  • 46 篇 pattern recognit...
  • 37 篇 health informati...
  • 37 篇 image classifica...
  • 36 篇 image analysis
  • 34 篇 convolutional ne...
  • 33 篇 computer graphic...
  • 33 篇 image processing
  • 31 篇 deformation
  • 31 篇 computerized tom...

机构

  • 32 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 18 篇 ucl ctr med imag...
  • 17 篇 centre for medic...
  • 16 篇 shenzhen univ ma...
  • 16 篇 imperial coll lo...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 college of physi...
  • 10 篇 harvard med sch ...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 50 篇 navab nassir
  • 49 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 24 篇 glocker ben
  • 23 篇 ni dong
  • 22 篇 wang qian
  • 21 篇 hawkes david j.
  • 21 篇 alexander daniel...
  • 21 篇 davatzikos chris...
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 sato yoshinobu
  • 19 篇 fu huazhu
  • 18 篇 yang xin
  • 18 篇 stoyanov danail
  • 18 篇 langs georg
  • 18 篇 bai wenjia

语言

  • 2,820 篇 英文
  • 49 篇 其他
  • 6 篇 中文
检索条件"任意字段=5th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2874 条 记 录,以下是151-160 订阅
排序:
5th international MICCAI Brainlesion Workshop, BrainLes 2019, held in conjunction with the medical image computing for computer assisted intervention, MICCAI 2019
5th International MICCAI Brainlesion Workshop, BrainLes 2019...
收藏 引用
5th international MICCAI Brainlesion Workshop, BrainLes 2019, held in conjunction with the medical image computing for computer assisted intervention, MICCAI 2019
the proceedings contain 75 papers. the special focus in this conference is on Brainlesion Workshop. the topics include: 3D automatic brain tumor segmentation using a multiscale input U-Net network;semi-supervised vari...
来源: 评论
Concept Bottleneck with Visual Concept Filtering for Explainable medical image Classification  26th
Concept Bottleneck with Visual Concept Filtering for Explain...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Kim, Injae Kim, Jongha Choi, Joonmyung Kim, Hyunwoo J. Korea Univ Dept Comp Sci & Engn Seoul South Korea
Interpretability is a crucial factor in building reliable models for various medical applications. Concept Bottleneck Models (CBMs) enable interpretable image classification by utilizing human-understandable concepts ... 详细信息
来源: 评论
NASDM: Nuclei-Aware Semantic Histopathology image Generation Using Diffusion Models  26th
NASDM: Nuclei-Aware Semantic Histopathology Image Generation...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Shrivastava, Aman Fletcher, P. thomas Univ Virginia Charlottesville VA 22903 USA
In recent years, computational pathology has seen tremendous progress driven by deep learning methods in segmentation and classification tasks aiding prognostic and diagnostic settings. Nuclei segmentation, for instan... 详细信息
来源: 评论
SplitFed Resilience to Packet Loss: Where to Split, that is the Question  26th
SplitFed Resilience to Packet Loss: Where to Split, that is ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Shiranthika, Chamani Kafshgari, Zahra Hafezi Saeedi, Parvaneh Bajic, Ivan V. Simon Fraser Univ Sch Engn Sci Burnaby BC Canada
Decentralized machine learning has broadened its scope recently with the invention of Federated Learning (FL), Split Learning (SL), and their hybrids like Split Federated Learning (SplitFed or SFL). the goal of SFL is... 详细信息
来源: 评论
Regular SE(3) Group Convolutions for Volumetric medical image Analysis  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Kuipers, thijs P. Bekkers, Erik J. Univ Amsterdam Inst Informat Amsterdam Machine Learning Lab Amsterdam Netherlands
Regular group convolutional neural networks (G-CNNs) have been shown to increase model performance and improve equivariance to different geometrical symmetries. this work addresses the problem of SE(3), i.e., roto-tra... 详细信息
来源: 评论
Cross-Adversarial Local Distribution Regularization for Semi-supervised medical image Segmentation  26th
Cross-Adversarial Local Distribution Regularization for Semi...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: thanh Nguyen-Duc Trung Le Bammer, Roland Zhao, He Cai, Jianfei Dinh Phung Monash Univ Melbourne Australia CSIROs Data61 Melbourne Australia
medical semi-supervised segmentation is a technique where a model is trained to segment objects of interest in medical images with limited annotated data. Existing semi-supervised segmentation methods are usually base... 详细信息
来源: 评论
Structure-Preserving Instance Segmentation via Skeleton-Aware Distance Transform  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lin, Zudi Wei, Donglai Gupta, Aarush Liu, Xingyu Sun, Deqing Pfister, Hanspeter Harvard Univ Cambridge MA 02138 USA Boston Coll Chestnut Hill MA 02167 USA CMU Pittsburgh PA USA Google Res Mountain View CA USA
Objects with complex structures pose significant challenges to existing instance segmentation methods that rely on boundary or affinity maps, which are vulnerable to small errors around contacting pixels that cause no... 详细信息
来源: 评论
5th international MICCAI Brainlesion Workshop, BrainLes 2019, held in conjunction with the medical image computing for computer assisted intervention, MICCAI 2019
5th International MICCAI Brainlesion Workshop, BrainLes 2019...
收藏 引用
5th international MICCAI Brainlesion Workshop, BrainLes 2019, held in conjunction with the medical image computing for computer assisted intervention, MICCAI 2019
the proceedings contain 75 papers. the special focus in this conference is on Brainlesion Workshop. the topics include: Saliency based deep neural network for automatic detection of gadolinium-enhancing multiple scler...
来源: 评论
A Survey on Deep Learning-Based medical image Registration  5th
A Survey on Deep Learning-Based Medical Image Registration
收藏 引用
5th international conference on Neural computing for Advanced Applications (NCAA)
作者: Xu, Ronghao Liu, Chongxin Liu, Shuaitong Huang, Weijie Zhang, Menghua Univ Jinan Sch Elect Engn Jinan 250000 Peoples R China
In recent years, various methods have been proposed to address the fundamental task of medical image registration in medical image analysis. this paper systematically reviews the research progress in medical image reg... 详细信息
来源: 评论
X2Vision: 3D CT Reconstruction from Biplanar X-Rays with Deep Structure Prior  26th
X2Vision: 3D CT Reconstruction from Biplanar X-Rays with Dee...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Cafaro, Alexandre Spinat, Quentin Leroy, Amaury Maury, Pauline Munoz, Alexandre Beldjoudi, Guillaume Robert, Charlotte Deutsch, Eric Gregoire, Vincent Lepetit, Vincent Paragios, Nikos TheraPanacea Paris France Paris Saclay Univ Gustave Roussy Inserm 1030 Villejuif France Ctr Leon Berard Dept Radiat Oncol Lyon France Univ Gustave Eiffel CNRS LIGM Ecole Ponts Paris France
We propose an unsupervised deep learning method to reconstruct a 3D tomographic image from biplanar X-rays, to reduce the number of required projections, the patient dose, and the acquisition time. To address this ill... 详细信息
来源: 评论