咨询与建议

限定检索结果

文献类型

  • 2,658 篇 会议
  • 127 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 2,873 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,384 篇 工学
    • 2,166 篇 计算机科学与技术...
    • 1,124 篇 生物医学工程(可授...
    • 935 篇 软件工程
    • 550 篇 光学工程
    • 298 篇 生物工程
    • 268 篇 电气工程
    • 226 篇 电子科学与技术(可...
    • 183 篇 信息与通信工程
    • 164 篇 控制科学与工程
    • 84 篇 仪器科学与技术
    • 42 篇 核科学与技术
    • 30 篇 力学(可授工学、理...
    • 28 篇 化学工程与技术
    • 24 篇 安全科学与工程
    • 23 篇 机械工程
    • 23 篇 动力工程及工程热...
    • 20 篇 建筑学
  • 1,834 篇 医学
    • 1,359 篇 特种医学
    • 1,009 篇 临床医学
    • 402 篇 基础医学(可授医学...
    • 299 篇 药学(可授医学、理...
    • 209 篇 医学技术(可授医学...
    • 30 篇 公共卫生与预防医...
  • 692 篇 理学
    • 355 篇 数学
    • 354 篇 生物学
    • 329 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 45 篇 化学
  • 108 篇 管理学
    • 66 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
  • 9 篇 教育学
  • 7 篇 农学
  • 4 篇 经济学
  • 2 篇 法学

主题

  • 324 篇 image segmentati...
  • 127 篇 image registrati...
  • 110 篇 deep learning
  • 110 篇 magnetic resonan...
  • 109 篇 medical imaging
  • 65 篇 image enhancemen...
  • 62 篇 image reconstruc...
  • 59 篇 medical image se...
  • 57 篇 segmentation
  • 57 篇 artificial intel...
  • 56 篇 image processing...
  • 46 篇 pattern recognit...
  • 37 篇 health informati...
  • 37 篇 image classifica...
  • 36 篇 image analysis
  • 34 篇 convolutional ne...
  • 33 篇 computer graphic...
  • 33 篇 image processing
  • 31 篇 deformation
  • 31 篇 computerized tom...

机构

  • 32 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 18 篇 ucl ctr med imag...
  • 17 篇 centre for medic...
  • 16 篇 shenzhen univ ma...
  • 16 篇 imperial coll lo...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 college of physi...
  • 10 篇 harvard med sch ...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 50 篇 navab nassir
  • 49 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 24 篇 glocker ben
  • 23 篇 ni dong
  • 22 篇 wang qian
  • 21 篇 hawkes david j.
  • 21 篇 alexander daniel...
  • 21 篇 davatzikos chris...
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 sato yoshinobu
  • 19 篇 fu huazhu
  • 18 篇 yang xin
  • 18 篇 stoyanov danail
  • 18 篇 langs georg
  • 18 篇 bai wenjia

语言

  • 2,820 篇 英文
  • 49 篇 其他
  • 6 篇 中文
检索条件"任意字段=5th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2874 条 记 录,以下是161-170 订阅
排序:
Differentiable Beamforming for Ultrasound Autofocusing  26th
Differentiable Beamforming for Ultrasound Autofocusing
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Simson, Walter Zhuang, Louise Sanabria, Sergio J. Antil, Neha Dahl, Jeremy J. Hyun, Dongwoon Stanford Univ Stanford CA 94305 USA
Ultrasound images are distorted by phase aberration arising from local sound speed variations in the tissue, which lead to inaccurate time delays in beamforming and loss of image focus. Whereas state-of-the-art correc... 详细信息
来源: 评论
Implicit Neural Representations for Joint Decomposition and Registration of Gene Expression images in the Marmoset Brain  26th
Implicit Neural Representations for Joint Decomposition and ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Byra, Michal Poon, Charissa Shimogori, Tomomi Skibbe, Henrik RIKEN Ctr Brain Sci Brain Image Anal Unit Wako Saitama Japan Polish Acad Sci Inst Fundamental Technol Res Warsaw Poland RIKEN Ctr Brain Sci Lab Mol Mech Brain Dev Wako Saitama Japan
We propose a novel image registration method based on implicit neural representations that addresses the challenging problem of registering a pair of brain images with similar anatomical structures, but where one imag... 详细信息
来源: 评论
Asymmetric Contour Uncertainty Estimation for medical image Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Judge, thierry Bernard, Olivier Kim, Woo-Jin Cho Gomez, Alberto Chartsias, Agisilaos Jodoin, Pierre-Marc Univ Sherbrooke Dept Comp Sci Sherbrooke PQ Canada Ultr Ltd Oxford OX4 2SU England Univ Lyon 1 Univ Lyon CNRS CREATISInserm U1294UMR5220 Villeurbanne France
Aleatoric uncertainty estimation is a critical step in medical image segmentation. Most techniques for estimating aleatoric uncertainty for segmentation purposes assume a Gaussian distribution over the neural network&... 详细信息
来源: 评论
Trans-SegNet - Deep Transfer Learning Approach to Detect Abnormalities in Microscopic Blood Smear images for medical image Segmentation  5
Trans-SegNet - Deep Transfer Learning Approach to Detect Abn...
收藏 引用
5th IEEE international conference on Communication, computing and Industry 6.0, C2I6 2024
作者: Alkhouli, Mahmoud Saed Joshi, Hiren Gujarat University Ahmedabad India
medical image segmentation is very important for detecting illness and treatment in a precise manner. the diseases like leukemia, malaria, and other blood disorders identification mainly depends on the anomalies segme... 详细信息
来源: 评论
A Federated Learning-Friendly Approach for Parameter-Efficient Fine-Tuning of SAM in 3D Segmentation  9th
A Federated Learning-Friendly Approach for Parameter-Efficie...
收藏 引用
27th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Asokan, Mothilal Benjamin, Joseph Geo Yaqub, Mohammad Nandakumar, Karthik Mohamed bin Zayed Univ Artificial Intelligence MB Abu Dhabi U Arab Emirates
Adapting foundation models for medical image analysis requires finetuning them on a considerable amount of data because of extreme distribution shifts between natural (source) data used for pre-training and medical (t... 详细信息
来源: 评论
Input Augmentation with SAM: Boosting medical image Segmentation with Segmentation Foundation Model  26th
Input Augmentation with SAM: Boosting Medical Image Segmenta...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Zhang, Yizhe Zhou, Tao Wang, Shuo Liang, Peixian Zhang, Yejia Chen, Danny Z. Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China Fudan Univ Sch Basic Med Sci Digital Med Res Ctr Shanghai 200032 Peoples R China Shanghai Key Lab MICCAI Shanghai 200032 Peoples R China Univ Notre Dame Dept Comp Sci & Engn Notre Dame IN 46556 USA
the Segment Anything Model (SAM) is a recently developed large model for general-purpose segmentation for computer vision tasks. SAM was trained using 11 million images with over 1 billion masks and can produce segmen...
来源: 评论
Intraoperative CT Augmentation for Needle-Based Liver interventions  26th
Intraoperative CT Augmentation for Needle-Based Liver Interv...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: El Hadramy, Sidaty Verde, Juan Padoy, Nicolas Cotin, Stephane INRIA Strasbourg France Univ Strasbourg ICube CNRS Strasbourg France IHU Strasbourg Strasbourg France
this paper addresses the need for improved CT-guidance during needle-based liver procedures (i.e., tumor ablation), while reduces the need for contrast agent injection during such interventions. To achieve this object... 详细信息
来源: 评论
FSDiffReg: Feature-Wise and Score-Wise Diffusion-Guided Unsupervised Deformable image Registration for Cardiac images  26th
FSDiffReg: Feature-Wise and Score-Wise Diffusion-Guided Unsu...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Qin, Yi Li, Xiaomeng Hong Kong Univ Sci & Technol Kowloon Hong Kong Peoples R China
Unsupervised deformable image registration is one of the challenging tasks in medical imaging. Obtaining a high-quality deformation field while preserving deformation topology remains demanding amid a series of deep-l... 详细信息
来源: 评论
MAD: Modality Agnostic Distance Measure for image Registration  26th
MAD: Modality Agnostic Distance Measure for Image Registrati...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Sideri-Lampretsa, Vasiliki Zimmer, Veronika A. Qiu, Huaqi Kaissis, Georgios Rueckert, Daniel Tech Univ Munich Munich Germany Klinkum Rechts Isar Munich Germany Helmholtz Zentrum Munich Munich Germany Imperial Coll London Dept Comp London England
Multi-modal image registration is a crucial pre-processing step in many medical applications. However, it is a challenging task due to the complex intensity relationships between different imaging modalities, which ca... 详细信息
来源: 评论
Boundary Difference over Union Loss for medical image Segmentation  26th
Boundary Difference over Union Loss for Medical Image Segmen...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Sun, Fan Luo, Zhiming Li, Shaozi Xiamen Univ Dept Artificial Intelligence Xiamen Fujian Peoples R China
medical image segmentation is crucial for clinical diagnosis. However, current losses for medical image segmentation mainly focus on overall segmentation results, with fewer losses proposed to guide boundary segmentat... 详细信息
来源: 评论