咨询与建议

限定检索结果

文献类型

  • 2,658 篇 会议
  • 127 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 2,873 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,384 篇 工学
    • 2,166 篇 计算机科学与技术...
    • 1,124 篇 生物医学工程(可授...
    • 935 篇 软件工程
    • 550 篇 光学工程
    • 298 篇 生物工程
    • 268 篇 电气工程
    • 226 篇 电子科学与技术(可...
    • 183 篇 信息与通信工程
    • 164 篇 控制科学与工程
    • 84 篇 仪器科学与技术
    • 42 篇 核科学与技术
    • 30 篇 力学(可授工学、理...
    • 28 篇 化学工程与技术
    • 24 篇 安全科学与工程
    • 23 篇 机械工程
    • 23 篇 动力工程及工程热...
    • 20 篇 建筑学
  • 1,834 篇 医学
    • 1,359 篇 特种医学
    • 1,009 篇 临床医学
    • 402 篇 基础医学(可授医学...
    • 299 篇 药学(可授医学、理...
    • 209 篇 医学技术(可授医学...
    • 30 篇 公共卫生与预防医...
  • 692 篇 理学
    • 355 篇 数学
    • 354 篇 生物学
    • 329 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 45 篇 化学
  • 108 篇 管理学
    • 66 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
  • 9 篇 教育学
  • 7 篇 农学
  • 4 篇 经济学
  • 2 篇 法学

主题

  • 324 篇 image segmentati...
  • 127 篇 image registrati...
  • 110 篇 deep learning
  • 110 篇 magnetic resonan...
  • 109 篇 medical imaging
  • 65 篇 image enhancemen...
  • 62 篇 image reconstruc...
  • 59 篇 medical image se...
  • 57 篇 segmentation
  • 57 篇 artificial intel...
  • 56 篇 image processing...
  • 46 篇 pattern recognit...
  • 37 篇 health informati...
  • 37 篇 image classifica...
  • 36 篇 image analysis
  • 34 篇 convolutional ne...
  • 33 篇 computer graphic...
  • 33 篇 image processing
  • 31 篇 deformation
  • 31 篇 computerized tom...

机构

  • 32 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 18 篇 ucl ctr med imag...
  • 17 篇 centre for medic...
  • 16 篇 shenzhen univ ma...
  • 16 篇 imperial coll lo...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 college of physi...
  • 10 篇 harvard med sch ...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 50 篇 navab nassir
  • 49 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 24 篇 glocker ben
  • 23 篇 ni dong
  • 22 篇 wang qian
  • 21 篇 hawkes david j.
  • 21 篇 alexander daniel...
  • 21 篇 davatzikos chris...
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 sato yoshinobu
  • 19 篇 fu huazhu
  • 18 篇 yang xin
  • 18 篇 stoyanov danail
  • 18 篇 langs georg
  • 18 篇 bai wenjia

语言

  • 2,820 篇 英文
  • 49 篇 其他
  • 6 篇 中文
检索条件"任意字段=5th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2874 条 记 录,以下是181-190 订阅
排序:
Maximum Entropy on Erroneous Predictions: Improving Model Calibration for medical image Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Larrazabal, Agostina J. Martinez, Cesar Dolz, Jose Ferrante, Enzo UNL CONICET Res Inst Signals Syst & Computat Intelligence SinciFICH Santa Fe Argentina ETS Montreal LIVIA Montreal PQ Canada Tryolabs Montevideo Uruguay
Modern deep neural networks achieved remarkable progress in medical image segmentation tasks. However, it has recently been observed that they tend to produce overconfident estimates, even in situations of high uncert... 详细信息
来源: 评论
MRIS: A Multi-modal Retrieval Approach for image Synthesis on Diverse Modalities  26th
MRIS: A Multi-modal Retrieval Approach for Image Synthesis o...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chen, Boqi Niethammer, Marc Univ N Carolina Dept Comp Sci Chapel Hill NC 27599 USA
Multiple imaging modalities are often used for disease diagnosis, prediction, or population-based analyses. However, not all modalities might be available due to cost, different study designs, or changes in imaging te... 详细信息
来源: 评论
Fine Grain image classification using Fine-tuned MobileNet model  5
Fine Grain Image classification using Fine-tuned MobileNet m...
收藏 引用
5th IEEE international conference for Emerging Technology, INCET 2024
作者: Anvitha, Sagala Sai Reddy, Sagam Prashamsa Sunaini, Yerramachu Singh, Rimjhim Padam Department of Computer Science and Engineering Amrita School of Computing Amrita Vishwa Vidyapeetham Bengaluru India
the paper focuses on the development of an image classifier, which classifies variousfine-grained floral images based on their species. Classification of flowers has many advantages in various fields like Science, Med... 详细信息
来源: 评论
PMC-CLIP: Contrastive Language-image Pre-training Using Biomedical Documents  26th
PMC-CLIP: Contrastive Language-Image Pre-training Using Biom...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lin, Weixiong Zhao, Ziheng Zhang, Xiaoman Wu, Chaoyi Zhang, Ya Wang, Yanfeng Xie, Weidi Shanghai Jiao Tong Univ Cooperat Medianet Innovat Ctr Shanghai Peoples R China Shanghai AI Lab Shanghai Peoples R China
Foundation models trained on large-scale dataset gain a recent surge in CV and NLP. In contrast, development in biomedical domain lags far behind due to data scarcity. To address this issue, we build and release PMC-O... 详细信息
来源: 评论
Self-adaptive Adversarial Training for Robust medical Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wang, Fu Fu, Zeyu Zhang, Yanghao Ruan, Wenjie Univ Exeter Exeter EX4 4QF Devon England Univ Liverpool Liverpool L69 3BX Merseyside England
Adversarial training has been demonstrated to be one of the most effective approaches to training deep neural networks that are robust to malicious perturbations. Research on effectively applying it to produce robust ... 详细信息
来源: 评论
GPT4MIA: Utilizing Generative Pre-trained Transformer (GPT-3) as a Plug-and-Play Transductive Model for medical image Analysis  26th
GPT4MIA: Utilizing Generative Pre-trained Transformer (GPT-3...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Zhang, Yizhe Chen, Danny Z. Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China Univ Notre Dame Dept Comp Sci & Engn Notre Dame IN 46556 USA
In this paper, we propose a novel approach (called GPT4MIA) that utilizes Generative Pre-trained Transformer (GPT) as a plug-and-play transductive inference tool for medical image analysis (MIA). We provide theoretica... 详细信息
来源: 评论
Nonuniformly Spaced Control Points Based on Variational Cardiac image Registration  26th
Nonuniformly Spaced Control Points Based on Variational Card...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Su, Haosheng Yang, Xuan Shenzhen Univ Shenzhen 518060 Guangdong Peoples R China Guangdong Prov Key Lab Popular High Performance C Shenzhen Guangdong Peoples R China Shenzhen Key Lab Serv Comp & Applicat Shenzhen Guangdong Peoples R China
Non-uniformly spaced control points located on the interface of different objects are beneficial for constructing an accurate displacement field for image registration. However, extracting features of non-uniformly sp... 详细信息
来源: 评论
Empirical Analysis of a Segmentation Foundation Model in Prostate Imaging  26th
Empirical Analysis of a Segmentation Foundation Model in Pro...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Kim, Heejong Butoi, Victor Ion Dalca, Adrian V. Sabuncu, Mert R. Weill Cornell Med Dept Radiol New York NY 10065 USA Cornell Univ Sch Elect & Comp Engn Ithaca NY USA Cornell Tech Ithaca NY USA Massachusetts Gen Hosp Martinos Ctr Biomed Imaging Boston MA USA Harvard Med Sch Boston MA USA MIT Comp Sci & Artificial Intelligence Lab Cambridge MA USA
Most state-of-the-art techniques for medical image segmentation rely on deep-learning models. these models, however, are often trained on narrowly-defined tasks in a supervised fashion, which requires expensive labele... 详细信息
来源: 评论
Anti-adversarial Consistency Regularization for Data Augmentation: Applications to Robust medical image Segmentation  26th
Anti-adversarial Consistency Regularization for Data Augment...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Cho, Hyuna Han, Yubin Kim, Won Hwa Pohang Univ Sci & Technol POSTECH Pohang South Korea
Modern deep learning methods for semantic segmentation require labor-intensive labeling for large-scale datasets with dense pixel-level annotations. Recent data augmentation methods such as dropping, mixing image patc... 详细信息
来源: 评论
Text-Guided Foundation Model Adaptation for Pathological image Classification  26th
Text-Guided Foundation Model Adaptation for Pathological Ima...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Zhang, Yunkun Gao, Jin Zhou, Mu Wang, Xiaosong Qiao, Yu Zhang, Shaoting Wang, Dequan Shanghai Jiao Tong Univ Shanghai Peoples R China Rutgers State Univ Newark NJ USA Shanghai AI Lab Shanghai Peoples R China
the recent surge of foundation models in computer vision and natural language processing opens up perspectives in utilizing multi-modal clinical data to train large models with strong generalizability. Yet pathologica... 详细信息
来源: 评论