咨询与建议

限定检索结果

文献类型

  • 2,658 篇 会议
  • 127 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 2,873 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,384 篇 工学
    • 2,166 篇 计算机科学与技术...
    • 1,124 篇 生物医学工程(可授...
    • 935 篇 软件工程
    • 550 篇 光学工程
    • 298 篇 生物工程
    • 268 篇 电气工程
    • 226 篇 电子科学与技术(可...
    • 183 篇 信息与通信工程
    • 164 篇 控制科学与工程
    • 84 篇 仪器科学与技术
    • 42 篇 核科学与技术
    • 30 篇 力学(可授工学、理...
    • 28 篇 化学工程与技术
    • 24 篇 安全科学与工程
    • 23 篇 机械工程
    • 23 篇 动力工程及工程热...
    • 20 篇 建筑学
  • 1,834 篇 医学
    • 1,359 篇 特种医学
    • 1,009 篇 临床医学
    • 402 篇 基础医学(可授医学...
    • 299 篇 药学(可授医学、理...
    • 209 篇 医学技术(可授医学...
    • 30 篇 公共卫生与预防医...
  • 692 篇 理学
    • 355 篇 数学
    • 354 篇 生物学
    • 329 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 45 篇 化学
  • 108 篇 管理学
    • 66 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
  • 9 篇 教育学
  • 7 篇 农学
  • 4 篇 经济学
  • 2 篇 法学

主题

  • 324 篇 image segmentati...
  • 127 篇 image registrati...
  • 110 篇 deep learning
  • 110 篇 magnetic resonan...
  • 109 篇 medical imaging
  • 65 篇 image enhancemen...
  • 62 篇 image reconstruc...
  • 59 篇 medical image se...
  • 57 篇 segmentation
  • 57 篇 artificial intel...
  • 56 篇 image processing...
  • 46 篇 pattern recognit...
  • 37 篇 health informati...
  • 37 篇 image classifica...
  • 36 篇 image analysis
  • 34 篇 convolutional ne...
  • 33 篇 computer graphic...
  • 33 篇 image processing
  • 31 篇 deformation
  • 31 篇 computerized tom...

机构

  • 32 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 18 篇 ucl ctr med imag...
  • 17 篇 centre for medic...
  • 16 篇 shenzhen univ ma...
  • 16 篇 imperial coll lo...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 college of physi...
  • 10 篇 harvard med sch ...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 50 篇 navab nassir
  • 49 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 24 篇 glocker ben
  • 23 篇 ni dong
  • 22 篇 wang qian
  • 21 篇 hawkes david j.
  • 21 篇 alexander daniel...
  • 21 篇 davatzikos chris...
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 sato yoshinobu
  • 19 篇 fu huazhu
  • 18 篇 yang xin
  • 18 篇 stoyanov danail
  • 18 篇 langs georg
  • 18 篇 bai wenjia

语言

  • 2,820 篇 英文
  • 49 篇 其他
  • 6 篇 中文
检索条件"任意字段=5th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2874 条 记 录,以下是231-240 订阅
排序:
Contrastive Masked image-Text Modeling for medical Visual Representation Learning  26th
Contrastive Masked Image-Text Modeling for Medical Visual Re...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chen, Cheng Zhong, Aoxiao Wu, Dufan Luo, Jie Li, Quanzheng Massachusetts Gen Hosp Ctr Adv Med Comp & Anal Boston MA 02114 USA Harvard Med Sch Boston MA 02115 USA Harvard Univ Sch Engn & Appl Sci Boston MA 02115 USA Massachusetts Gen Brigham Data Sci Off Boston MA USA
Self-supervised learning (SSL) of visual representations from paired medical images and text reports has recently shown great promise for various downstream tasks. However, previous work has focused on investigating t... 详细信息
来源: 评论
Efficient Registration of Longitudinal Studies for Follow-Up Lesion Assessment by Exploiting Redundancy and Composition of Deformations  26th
Efficient Registration of Longitudinal Studies for Follow-Up...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Kuckertz, Sven Heldmann, Stefan Moltz, Jan Hendrik Fraunhofer Inst Digital Med MEVIS Lubeck Germany
Follow-up assessment of lesions for cancer patients is an important part of radiologists' work. image registration is a key technology to facilitate this task, as it allows for the automatic establishment of corre... 详细信息
来源: 评论
MDViT: Multi-domain Vision Transformer for Small medical image Segmentation Datasets  26th
MDViT: Multi-domain Vision Transformer for Small Medical Ima...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Du, Siyi Bayasi, Nourhan Hamarneh, Ghassan Garbi, Rafeef Univ British Columbia Vancouver BC Canada Simon Fraser Univ Burnaby BC Canada
Despite its clinical utility, medical image segmentation (MIS) remains a daunting task due to images' inherent complexity and variability. Vision transformers (ViTs) have recently emerged as a promising solution t... 详细信息
来源: 评论
Towards AI-Driven Radiology Education: A Self-supervised Segmentation-Based Framework for High-Precision medical image Editing  26th
Towards AI-Driven Radiology Education: A Self-supervised Seg...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Kobayashi, Kazuma Gu, Lin Hataya, Ryuichiro Miyake, Mototaka Takamizawa, Yasuyuki Ito, Sono Watanabe, Hirokazu Yoshida, Yukihiro Yoshimura, Hiroki Harada, Tatsuya Hamamoto, Ryuji Natl Canc Ctr Tokyo Japan RIKEN Ctr Adv Intelligence Project Tokyo Japan Univ Tokyo Tokyo Japan RIKEN Informat R&D & Strategy Headquarters Tokyo Japan Natl Canc Ctr Tokyo Japan Hiroshima Univ Sch Med Hiroshima Japan
medical education is essential for providing the best patient care in medicine, but creating educational materials using real-world data poses many challenges. For example, the diagnosis and treatment of a disease can... 详细信息
来源: 评论
M-GenSeg: Domain Adaptation for Target Modality Tumor Segmentation with Annotation-Efficient Supervision  26th
M-GenSeg: Domain Adaptation for Target Modality Tumor Segmen...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Alefsen, Malo Vorontsov, Eugene Kadoury, Samuel Ecole Polytech Montreal Montreal PQ Canada CHUM Ctr Rech Montreal PQ Canada Paige Montreal PQ Canada
Automated medical image segmentation using deep neural networks typically requires substantial supervised training. However, these models fail to generalize well across different imaging modalities. this shortcoming, ... 详细信息
来源: 评论
Decoupled Consistency for Semi-supervised medical image Segmentation  26th
Decoupled Consistency for Semi-supervised Medical Image Segm...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chen, Faquan Fei, Jingjing Chen, Yaqi Huang, Chenxi Xiamen Univ Schoor Informat Xiamen Peoples R China SenseTime Res Shanghai Peoples R China
By fully utilizing unlabeled data, the semi-supervised learning (SSL) technique has recently produced promising results in the segmentation of medical images. Pseudo labeling and consistency regularization are two eff... 详细信息
来源: 评论
Learning Expected Appearances for Intraoperative Registration During Neurosurgery  26th
Learning Expected Appearances for Intraoperative Registratio...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Haouchine, Nazim Dorent, Reuben Juvekar, Parikshit Torio, Erickson Wells, William M., III Kapur, Tina Golby, Alexandra J. Frisken, Sarah Harvard Med Sch Brigham & Womens Hosp Boston MA 02115 USA MIT 77 Massachusetts Ave Cambridge MA 02139 USA
We present a novel method for intraoperative patient-to-image registration by learning Expected Appearances. Our method uses preoperative imaging to synthesize patient-specific expected views through a surgical micros... 详细信息
来源: 评论
Non-iterative Coarse-to-Fine Transformer Networks for Joint Affine and Deformable image Registration  26th
Non-iterative Coarse-to-Fine Transformer Networks for Joint ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Meng, Mingyuan Bi, Lei Fulham, Michael Feng, Dagan Kim, Jinman Univ Sydney Sch Comp Sci Sydney NSW Australia Shanghai Jiao Tong Univ Inst Translat Med Shanghai Peoples R China Royal Prince Alfred Hosp Dept Mol Imaging Sydney NSW Australia Shanghai Jiao Tong Univ Med X Res Inst Shanghai Peoples R China
image registration is a fundamental requirement for medical image analysis. Deep registration methods based on deep learning have been widely recognized for their capabilities to perform fast end-to-end registration. ... 详细信息
来源: 评论
Investigating Data Memorization in 3D Latent Diffusion Models for medical image Synthesis  3rd
Investigating Data Memorization in 3D Latent Diffusion Model...
收藏 引用
3rd Workshop on Deep Generative Models for medical image computing and computer assisted intervention (DGM4MICCAI) at the 26th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Dar, Salman Ul Hassan Ghanaat, Arman Kahmann, Jannik Ayx, Isabelle Papavassiliu, theano Schoenberg, Stefan O. Engelhardt, Sandy Heidelberg Univ Hosp Dept Internal Med 3 Grp Artificial Intelligence CardiovascularMed D-69120 Heidelberg Germany AI Hlth Innovat Cluster Heidelberg Germany German Ctr Cardiovasc Res DZHK Partner Site Heidelberg Mannheim Heidelberg Germany Heidelberg Univ Univ Med Ctr Mannheim Dept Radiol & Nucl Med Theodor Kutzer Ufer 1-3 D-68167 Mannheim Germany Univ Med Ctr Mannheim Dept Med Cardiol 1 Theodor Kutzer Ufer 1-3 D-68167 Mannheim Germany
Generative latent diffusion models have been established as state-of-the-art in data generation. One promising application is generation of realistic synthetic medical imaging data for open data sharing without compro... 详细信息
来源: 评论
Retinal Scan Denoising Using Generative Adversarial Networks: A Deep Convolutional Approach  5
Retinal Scan Denoising Using Generative Adversarial Networks...
收藏 引用
5th international conference on IoT Based Control Networks and Intelligent Systems, ICICNIS 2024
作者: Gowthami, G. Mano Shankari, J. Babu, Tina St. Francis de Sales College Department of Computer Applications Bengaluru India Alliance School of Advanced Computing Department of Computer Science and Engineering Alliance University Bengaluru India
image denoising is needed if there is a need to remove noise while preserving details or structures in images in computing vision and image processing. Recent advancements in generative adversarial networks (GANs) and... 详细信息
来源: 评论