咨询与建议

限定检索结果

文献类型

  • 2,658 篇 会议
  • 127 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 2,873 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,384 篇 工学
    • 2,166 篇 计算机科学与技术...
    • 1,124 篇 生物医学工程(可授...
    • 935 篇 软件工程
    • 550 篇 光学工程
    • 298 篇 生物工程
    • 268 篇 电气工程
    • 226 篇 电子科学与技术(可...
    • 183 篇 信息与通信工程
    • 164 篇 控制科学与工程
    • 84 篇 仪器科学与技术
    • 42 篇 核科学与技术
    • 30 篇 力学(可授工学、理...
    • 28 篇 化学工程与技术
    • 24 篇 安全科学与工程
    • 23 篇 机械工程
    • 23 篇 动力工程及工程热...
    • 20 篇 建筑学
  • 1,834 篇 医学
    • 1,359 篇 特种医学
    • 1,009 篇 临床医学
    • 402 篇 基础医学(可授医学...
    • 299 篇 药学(可授医学、理...
    • 209 篇 医学技术(可授医学...
    • 30 篇 公共卫生与预防医...
  • 692 篇 理学
    • 355 篇 数学
    • 354 篇 生物学
    • 329 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 45 篇 化学
  • 108 篇 管理学
    • 66 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
  • 9 篇 教育学
  • 7 篇 农学
  • 4 篇 经济学
  • 2 篇 法学

主题

  • 324 篇 image segmentati...
  • 127 篇 image registrati...
  • 110 篇 deep learning
  • 110 篇 magnetic resonan...
  • 109 篇 medical imaging
  • 65 篇 image enhancemen...
  • 62 篇 image reconstruc...
  • 59 篇 medical image se...
  • 57 篇 segmentation
  • 57 篇 artificial intel...
  • 56 篇 image processing...
  • 46 篇 pattern recognit...
  • 37 篇 health informati...
  • 37 篇 image classifica...
  • 36 篇 image analysis
  • 34 篇 convolutional ne...
  • 33 篇 computer graphic...
  • 33 篇 image processing
  • 31 篇 deformation
  • 31 篇 computerized tom...

机构

  • 32 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 18 篇 ucl ctr med imag...
  • 17 篇 centre for medic...
  • 16 篇 shenzhen univ ma...
  • 16 篇 imperial coll lo...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 college of physi...
  • 10 篇 harvard med sch ...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 50 篇 navab nassir
  • 49 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 24 篇 glocker ben
  • 23 篇 ni dong
  • 22 篇 wang qian
  • 21 篇 hawkes david j.
  • 21 篇 alexander daniel...
  • 21 篇 davatzikos chris...
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 sato yoshinobu
  • 19 篇 fu huazhu
  • 18 篇 yang xin
  • 18 篇 stoyanov danail
  • 18 篇 langs georg
  • 18 篇 bai wenjia

语言

  • 2,820 篇 英文
  • 49 篇 其他
  • 6 篇 中文
检索条件"任意字段=5th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2874 条 记 录,以下是241-250 订阅
排序:
DULDA: Dual-Domain Unsupervised Learned Descent Algorithm for PET image Reconstruction  26th
DULDA: Dual-Domain Unsupervised Learned Descent Algorithm fo...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Hu, Rui Chen, Yunmei Kim, Kyungsang Rockenbach, Marcio Aloisio Bezerra Cavalcanti Li, Quanzheng Liu, Huafeng Zhejiang Univ Dept Opt Engn State Key Lab Modern Opt Instrumentat Hangzhou 310027 Peoples R China Univ Florida Dept Math Gainesville FL 32611 USA Harvard Med Sch Massachusetts Gen Hosp Ctr Adv Med Comp & Anal Boston MA 02114 USA Massachusetts Gen Brigham Data Sci Off Boston MA 02116 USA
Deep learning based PET image reconstruction methods have achieved promising results recently. However, most of these methods follow a supervised learning paradigm, which rely heavily on the availability of high-quali... 详细信息
来源: 评论
Mitosis Detection from Partial Annotation by Dataset Generation via Frame-Order Flipping  26th
Mitosis Detection from Partial Annotation by Dataset Generat...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Nishimura, Kazuya Katanaya, Ami Chuma, Shinichiro Bise, Ryoma Kyushu Univ Fukuoka Japan Kyoto Univ Kyoto Japan
Detection of mitosis events plays an important role in biomedical research. Deep-learning-based mitosis detection methods have achieved outstanding performance with a certain amount of labeled data. However, these met... 详细信息
来源: 评论
Certification of Deep Learning Models for medical image Segmentation  26th
Certification of Deep Learning Models for Medical Image Segm...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Laousy, Othmane Araujo, Alexandre Chassagnon, Guillaume Paragios, Nikos Revel, Marie-Pierre Vakalopoulou, Maria Univ Paris Saclay Cent Supelec MICS Gif Sur Yvette France Paris Cite Univ Hop Cochin AP HP Paris France Inria Saclay Gif Sur Yvette France NYU New York NY USA Therapanacea Paris France
In medical imaging, segmentation models have known a significant improvement in the past decade and are now used daily in clinical practice. However, similar to classification models, segmentation models are affected ... 详细信息
来源: 评论
ACC-UNet: A Completely Convolutional UNet Model for the 2020s  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Ibtehaz, Nabil Kihara, Daisuke Purdue Univ Dept Comp Sci W Lafayette IN 47907 USA Purdue Univ Dept Biol Sci W Lafayette IN 47907 USA
this decade is marked by the introduction of Vision Transformer, a radical paradigm shift in broad computer vision. A similar trend is followed in medical imaging, UNet, one of the most influential architectures, has ... 详细信息
来源: 评论
Gaze-assisted Autism Spectrum Disorder Identification: A Fusion of Machine Learning and Deep Learning Approaches for Preemptive Identification  5
Gaze-Assisted Autism Spectrum Disorder Identification: A Fus...
收藏 引用
5th international conference on Mobile computing and Sustainable Informatics, ICMCSI 2024
作者: Simon, Judy Kapileswar, N. Datchinamoorthi, M. Muthukumar, S. Keerthana Devi, G. SRM Institute of Science and Technology Dept of Electronics and Communication Engineering Chennai India SRM Institute of Science and Technology Dept of Electronics and Computer Engineering Chennai India
this research proposes an all-encompassing method for diagnosing Autism Spectrum Disorder (ASD) by leveraging eye-tracking data and advanced machine learning techniques. In this study, gaze-tracking data was collected... 详细信息
来源: 评论
Tracking Lesion Evolution Using a Boundary Enhanced Approach for MS Change Segmentation (BEAMS)
Tracking Lesion Evolution Using a Boundary Enhanced Approac...
收藏 引用
Workshop on Longitudinal Disease Tracking and Modeling with medical images and Data, LDTM 2024, 5th international Workshop on Multiscale Multimodal medical Imaging, MMMI 2024, 1st Workshop on Machine Learning for Multimodal/-sensor Healthcare Data, ML4MHD2024 and Workshop on Multimodal Learning and Fusion Across Scales for Clinical Decision Support, ML-CDS 2024 held in conjunction with the 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
作者: Mathur, Prateek Kelly, Brendan S. Killeen, Ronan P Lawlor, Aonghus School of Computer Science University College Dublin Dublin Ireland School of Medicine University College Dublin Dublin Ireland Insight SFI Research Centre for Data Analytics Dublin Ireland St. Vincent’s University Hospital Dublin Ireland
Multiple sclerosis (MS) is a chronic disease of the Central Nervous System (CNS) primarily characterised on Magnetic Resonance Imaging (MRI) by hyper-intense lesions. Accurate and timely identification of new lesions ... 详细信息
来源: 评论
HartleyMHA: Self-attention in Frequency Domain for Resolution-Robust and Parameter-Efficient 3D image Segmentation  26th
HartleyMHA: Self-attention in Frequency Domain for Resolutio...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wong, Ken C. L. Wang, Hongzhi Syeda-Mahmood, Tanveer IBM Res Almaden Res Ctr San Jose CA 95120 USA
With the introduction of Transformers, different attention-based models have been proposed for image segmentation with promising results. Although self-attention allows capturing of long-range dependencies, it suffers... 详细信息
来源: 评论
DHC: Dual-Debiased Heterogeneous Co-training Framework for Class-Imbalanced Semi-supervised medical image Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wang, Haonan Li, Xiaomeng Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China
the volume-wise labeling of 3D medical images is expertise-demanded and time-consuming;hence semi-supervised learning (SSL) is highly desirable for training with limited labeled data. Imbalanced class distribution is ... 详细信息
来源: 评论
MetaLR: Meta-tuning of Learning Rates for Transfer Learning in medical Imaging  26th
MetaLR: Meta-tuning of Learning Rates for Transfer Learning ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chen, Yixiong Liu, Li Li, Jingxian Jiang, Hua Ding, Chris Zhou, Zongwei Chinese Univ Hong Kong Shenzhen Peoples R China Shenzhen Res Inst Big Data Shenzhen Peoples R China Hong Kong Univ Sci & Technol Guangzhou Guangzhou Peoples R China Fudan Univ Software Sch Shanghai Peoples R China Johns Hopkins Univ Baltimore MD USA
In medical image analysis, transfer learning is a powerful method for deep neural networks (DNNs) to generalize on limited medical data. Prior efforts have focused on developing pre-training algorithms on domains such... 详细信息
来源: 评论
SAMConvex: Fast Discrete Optimization for CT Registration Using Self-supervised Anatomical Embedding and Correlation Pyramid  26th
SAMConvex: Fast Discrete Optimization for CT Registration Us...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Li, Zi Tian, Lin Mok, Tony C. W. Bai, Xiaoyu Wang, Puyang Ge, Jia Zhou, Jingren Lu, Le Ye, Xianghua Yan, Ke Jin, Dakai DAMO Acad Alibaba Grp Hangzhou Peoples R China Univ N Carolina Chapel Hill NC 27515 USA Zhejiang Univ Coll Med Affiliated Hosp 1 Hangzhou Peoples R China Hupan Lab Hangzhou 310023 Peoples R China
Estimating displacement vector field via a cost volume computed in the feature space has shown great success in image registration, but it suffers excessive computation burdens. Moreover, existing feature descriptors ... 详细信息
来源: 评论