咨询与建议

限定检索结果

文献类型

  • 2,658 篇 会议
  • 127 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 2,873 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,384 篇 工学
    • 2,166 篇 计算机科学与技术...
    • 1,124 篇 生物医学工程(可授...
    • 935 篇 软件工程
    • 550 篇 光学工程
    • 298 篇 生物工程
    • 268 篇 电气工程
    • 226 篇 电子科学与技术(可...
    • 183 篇 信息与通信工程
    • 164 篇 控制科学与工程
    • 84 篇 仪器科学与技术
    • 42 篇 核科学与技术
    • 30 篇 力学(可授工学、理...
    • 28 篇 化学工程与技术
    • 24 篇 安全科学与工程
    • 23 篇 机械工程
    • 23 篇 动力工程及工程热...
    • 20 篇 建筑学
  • 1,834 篇 医学
    • 1,359 篇 特种医学
    • 1,009 篇 临床医学
    • 402 篇 基础医学(可授医学...
    • 299 篇 药学(可授医学、理...
    • 209 篇 医学技术(可授医学...
    • 30 篇 公共卫生与预防医...
  • 692 篇 理学
    • 355 篇 数学
    • 354 篇 生物学
    • 329 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 45 篇 化学
  • 108 篇 管理学
    • 66 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
  • 9 篇 教育学
  • 7 篇 农学
  • 4 篇 经济学
  • 2 篇 法学

主题

  • 324 篇 image segmentati...
  • 127 篇 image registrati...
  • 110 篇 deep learning
  • 110 篇 magnetic resonan...
  • 109 篇 medical imaging
  • 65 篇 image enhancemen...
  • 62 篇 image reconstruc...
  • 59 篇 medical image se...
  • 57 篇 segmentation
  • 57 篇 artificial intel...
  • 56 篇 image processing...
  • 46 篇 pattern recognit...
  • 37 篇 health informati...
  • 37 篇 image classifica...
  • 36 篇 image analysis
  • 34 篇 convolutional ne...
  • 33 篇 computer graphic...
  • 33 篇 image processing
  • 31 篇 deformation
  • 31 篇 computerized tom...

机构

  • 32 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 18 篇 ucl ctr med imag...
  • 17 篇 centre for medic...
  • 16 篇 shenzhen univ ma...
  • 16 篇 imperial coll lo...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 college of physi...
  • 10 篇 harvard med sch ...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 50 篇 navab nassir
  • 49 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 24 篇 glocker ben
  • 23 篇 ni dong
  • 22 篇 wang qian
  • 21 篇 hawkes david j.
  • 21 篇 alexander daniel...
  • 21 篇 davatzikos chris...
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 sato yoshinobu
  • 19 篇 fu huazhu
  • 18 篇 yang xin
  • 18 篇 stoyanov danail
  • 18 篇 langs georg
  • 18 篇 bai wenjia

语言

  • 2,820 篇 英文
  • 49 篇 其他
  • 6 篇 中文
检索条件"任意字段=5th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2874 条 记 录,以下是291-300 订阅
排序:
Cross-Modulated Few-Shot image Generation for Colorectal Tissue Classification  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Kumar, Amandeep Bhunia, Ankan Kumar Narayan, Sanath Cholakkal, Hisham Anwer, Rao Muhammad Laaksonen, Jorma Khan, Fahad Shahbaz MBZUAI Masdar City U Arab Emirates Aalto Univ Espoo Finland Technol Innovat Inst Masdar City U Arab Emirates Linkoping Univ Linkoping Sweden
In this work, we propose a few-shot colorectal tissue image generation method for addressing the scarcity of histopathological training data for rare cancer tissues. Our few-shot generation method, named XM-GAN, takes... 详细信息
来源: 评论
Reconstruction of medical images from Sparse Data: A Deep Learning Approach  5
Reconstruction of Medical Images from Sparse Data: A Deep Le...
收藏 引用
5th international conference on Mobile computing and Sustainable Informatics, ICMCSI 2024
作者: Saravanan, S. Bruntha, P.Malin Joseph S, Iwin thanakumar Subramanian, Suresh Sundar, G. Naveen Narmadha, D. VIT School of Design Vellore Institute of Technology Department of Multimedia Vellore India Karunya Institute of Technology and Sciences Department of Electronics and Communication Engineering Coimbatore India Koneru Lakshmaiah Education Foundation Department of CSE Andhrapradesh Vaddeswaram India Saveetha School of Engineering Saveetha Institute of Medical and Technical Science Department of Electronics and Communication Engineering Chennai India Karunya Institute of Technology and Sciences Department of Computer Science and Engineering Coimbatore India
For diagnosis, medical imaging technology plays a significant role in today's scenario. Accordingly, enormous amounts of medical data are generated daily on research centers and hospitals. Storing the medical imag... 详细信息
来源: 评论
Construction of data domain based cascade ensemble learning algorithm for pathological image diagnosis  5
Construction of data domain based cascade ensemble learning ...
收藏 引用
5th international conference on computer Vision, image and Deep Learning, CVIDL 2024
作者: Hua, Jiajun Shanghai University College of Computer Engineering and Science Shanghai China
the use of medical images is an important link in the early detection of cancer. Artificial intelligence theories and technologies such as machine learning and neural networks have gradually become important tools to ... 详细信息
来源: 评论
Low-Dose CT image Super-Resolution Network with Dual-Guidance Feature Distillation and Dual-Path Content Communication  26th
Low-Dose CT Image Super-Resolution Network with Dual-Guidanc...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chi, Jianning Sun, Zhiyi Zhao, Tianli Wang, Huan Yu, Xiaosheng Wu, Chengdong Northeastern Univ Fac Robot Sci & Engn Shenyang Peoples R China
Low-dose computer tomography (LDCT) has been widely used in medical diagnosis yet suffered from spatial resolution loss and artifacts. Numerous methods have been proposed to deal with those issues, but there still exi... 详细信息
来源: 评论
Detecting the Sensing Area of a Laparoscopic Probe in Minimally Invasive Cancer Surgery  26th
Detecting the Sensing Area of a Laparoscopic Probe in Minima...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Huang, Baoru Hu, Yicheng Nguyen, Anh Giannarou, Stamatia Elson, Daniel S. Imperial Coll London Hamlyn Ctr Robot Surg London England Imperial Coll London Dept Surg & Canc London England Univ Liverpool Dept Comp Sci Liverpool Merseyside England
In surgical oncology, it is challenging for surgeons to identify lymph nodes and completely resect cancer even with pre-operative imaging systems like PET and CT, because of the lack of reliable intraoperative visuali... 详细信息
来源: 评论
Groupwise image Registration with Atlas of Multiple Resolutions Refined at Test Phase  26th
Groupwise Image Registration with Atlas of Multiple Resoluti...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: He, Ziyi Mok, Tony C. W. Chung, Albert C. S. Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Clear Water Bay Hong Kong Peoples R China
Groupwise image registration (GIR) is a fundamental task that facilitates the simultaneous deformation of a group of subjects towards a specified or implicit center. Existing works mainly focus on either optimization-... 详细信息
来源: 评论
Robust Segmentation via Topology Violation Detection and Feature Synthesis  26th
Robust Segmentation via Topology Violation Detection and Fea...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Li, Liu Ma, Qiang Ouyang, Cheng Li, Zeju Meng, Qingjie Zhang, Weitong Qiao, Mengyun Kyriakopoulou, Vanessa Hajnal, Joseph V. Rueckert, Daniel Kainz, Bernhard Imperial Coll London London England Univ Oxford Oxford England Kings Coll London London England Tech Univ Munich Munich Germany FAU Erlangen Nurnberg Erlangen Germany
Despite recent progress of deep learning-based medical image segmentation techniques, fully automatic results often fail to meet clinically acceptable accuracy, especially when topological constraints should be observ... 详细信息
来源: 评论
Masked Frequency Consistency for Domain-Adaptive Semantic Segmentation of Laparoscopic images  26th
Masked Frequency Consistency for Domain-Adaptive Semantic Se...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Zhao, Xinkai Hayashi, Yuichiro Oda, Masahiro Kitasaka, Takayuki Mori, Kensaku Nagoya Univ Grad Sch Informat Nagoya Aichi Japan Nagoya Univ Informat Strategy Off Informat & Commun Nagoya Aichi Japan Aichi Inst Technol Dept Informat Sci Toyota Japan Nagoya Univ Ctr Informat Technol Nagoya Aichi Japan Natl Inst Informat Res Ctr Med Bigdata Tokyo Japan
Semantic segmentation of laparoscopic images is an important issue for intraoperative guidance in laparoscopic surgery. However, acquiring and annotating laparoscopic datasets is labor-intensive, which limits the rese... 详细信息
来源: 评论
Enhancing medical Imaging: Denoising with Discrete Fourier Transform, Clustering, and Statistical Analysis  5
Enhancing Medical Imaging: Denoising with Discrete Fourier T...
收藏 引用
5th international conference on Circuits, Control, Communication and computing, I4C 2024
作者: Nandini, Bandaru Jaya Sahithi, Mamidi Leha Harshika, Siddareddy Gari Jayan, Sarada Amrita School of Computing Department of Computer Science and Engineering Amrita Vishwa Vidyapeetham Bengaluru India Amrita School of Engineering Department of Mathematics Amrita Vishwa Vidyapeetham Bengaluru India
In the complex realm of medical imaging, noise poses a significant challenge as every pixel can convey crucial information that might save lives. Various factors, including environmental noise, sensor noise, and the i... 详细信息
来源: 评论
LoRA-MedSAM: Efficient medical image Segmentation  5th
LoRA-MedSAM: Efficient Medical Image Segmentation
收藏 引用
5th international conference on medical Imaging and computer Aided Diagnosis, MICAD 2024
作者: Hu, Jiamin Xu, Xuwei Zou, Zhenmin Department of Mechanical and Aerospace Engineering University of Manchester Manchester United Kingdom School of Electrical Engineering and Computer Science The University of Queensland Brisbane Australia
medical image segmentation becomes increasingly important for identifying and delineating anatomical structures, diseases, and abnormalities within medical images. However, existing large pre-trained foundation models... 详细信息
来源: 评论