咨询与建议

限定检索结果

文献类型

  • 2,658 篇 会议
  • 127 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 2,873 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,384 篇 工学
    • 2,166 篇 计算机科学与技术...
    • 1,124 篇 生物医学工程(可授...
    • 935 篇 软件工程
    • 550 篇 光学工程
    • 298 篇 生物工程
    • 268 篇 电气工程
    • 226 篇 电子科学与技术(可...
    • 183 篇 信息与通信工程
    • 164 篇 控制科学与工程
    • 84 篇 仪器科学与技术
    • 42 篇 核科学与技术
    • 30 篇 力学(可授工学、理...
    • 28 篇 化学工程与技术
    • 24 篇 安全科学与工程
    • 23 篇 机械工程
    • 23 篇 动力工程及工程热...
    • 20 篇 建筑学
  • 1,834 篇 医学
    • 1,359 篇 特种医学
    • 1,009 篇 临床医学
    • 402 篇 基础医学(可授医学...
    • 299 篇 药学(可授医学、理...
    • 209 篇 医学技术(可授医学...
    • 30 篇 公共卫生与预防医...
  • 692 篇 理学
    • 355 篇 数学
    • 354 篇 生物学
    • 329 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 45 篇 化学
  • 108 篇 管理学
    • 66 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
  • 9 篇 教育学
  • 7 篇 农学
  • 4 篇 经济学
  • 2 篇 法学

主题

  • 324 篇 image segmentati...
  • 127 篇 image registrati...
  • 110 篇 deep learning
  • 110 篇 magnetic resonan...
  • 109 篇 medical imaging
  • 65 篇 image enhancemen...
  • 62 篇 image reconstruc...
  • 59 篇 medical image se...
  • 57 篇 segmentation
  • 57 篇 artificial intel...
  • 56 篇 image processing...
  • 46 篇 pattern recognit...
  • 37 篇 health informati...
  • 37 篇 image classifica...
  • 36 篇 image analysis
  • 34 篇 convolutional ne...
  • 33 篇 computer graphic...
  • 33 篇 image processing
  • 31 篇 deformation
  • 31 篇 computerized tom...

机构

  • 32 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 18 篇 ucl ctr med imag...
  • 17 篇 centre for medic...
  • 16 篇 shenzhen univ ma...
  • 16 篇 imperial coll lo...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 college of physi...
  • 10 篇 harvard med sch ...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 50 篇 navab nassir
  • 49 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 24 篇 glocker ben
  • 23 篇 ni dong
  • 22 篇 wang qian
  • 21 篇 hawkes david j.
  • 21 篇 alexander daniel...
  • 21 篇 davatzikos chris...
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 sato yoshinobu
  • 19 篇 fu huazhu
  • 18 篇 yang xin
  • 18 篇 stoyanov danail
  • 18 篇 langs georg
  • 18 篇 bai wenjia

语言

  • 2,820 篇 英文
  • 49 篇 其他
  • 6 篇 中文
检索条件"任意字段=5th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2874 条 记 录,以下是361-370 订阅
排序:
Deep Learning-Based Anonymization of Chest Radiographs: A Utility-Preserving Measure for Patient Privacy  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Packhaeuser, Kai Guendel, Sebastian thamm, Florian Denzinger, Felix Maier, Andreas Friedrich Alexander Univ Erlangen Nurnberg Erlangen Germany
Robust and reliable anonymization of chest radiographs constitutes an essential step before publishing large datasets of such for research purposes. the conventional anonymization process is carried out by obscuring p... 详细信息
来源: 评论
IIB-MIL: Integrated Instance-Level and Bag-Level Multiple Instances Learning with Label Disambiguation for Pathological image Analysis  26th
IIB-MIL: Integrated Instance-Level and Bag-Level Multiple In...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Ren, Qin Zhao, Yu He, Bing Wu, Bingzhe Mai, Sijie Xu, Fan Huang, Yueshan He, Yonghong Huang, Junzhou Yao, Jianhua Tencent AI Lab Shenzhen 518000 Peoples R China Tsinghua Univ Shenzhen Int Grad Sch Shenzhen 518071 Peoples R China Sun Yat Sen Univ Sch Elect & Informat Technol Guangzhou 510006 Peoples R China ShanghaiTech Univ Shanghai 201210 Peoples R China Shanghai Jiao Tong Univ Shanghai 200240 Peoples R China Univ Texas Arlington Arlington TX 76019 USA
Digital pathology plays a pivotal role in the diagnosis and interpretation of diseases and has drawn increasing attention in modern healthcare. Due to the huge gigapixel-level size and diverse nature of whole-slide im... 详细信息
来源: 评论
Morphology-Inspired Unsupervised Gland Segmentation via Selective Semantic Grouping  26th
Morphology-Inspired Unsupervised Gland Segmentation via Sele...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Zhang, Qixiang Li, Yi Xue, Cheng Li, Xiaomeng Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China Southeast Univ Sch Comp Sci & Engn Nanjing Peoples R China
Designing deep learning algorithms for gland segmentation is crucial for automatic cancer diagnosis and prognosis. However, the expensive annotation cost hinders the development and application of this technology. In ... 详细信息
来源: 评论
Identification of Disease-Sensitive Brain Imaging Phenotypes and Genetic Factors Using GWAS Summary Statistics  26th
Identification of Disease-Sensitive Brain Imaging Phenotypes...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Xi, Duo Cui, Dingnan Zhang, Jin Shang, Muheng Zhang, Minjianan Guo, Lei Han, Junwei Du, Lei Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China
Brain imaging genetics is a rapidly growing neuroscience area that integrates genetic variations and brain imaging phenotypes to investigate the genetic underpinnings of brain disorders. In this field, using multi-mod... 详细信息
来源: 评论
Federated Condition Generalization on Low-dose CT Reconstruction via Cross-domain Learning  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chen, Shixuan Cao, Boxuan Du, Yinda Zhang, Yaoduo He, Ji Bian, Zhaoying Zeng, Dong Ma, Jianhua Southern Med Univ Sch Biomed Engn Guangzhou Guangdong Peoples R China Southern Med Univ Zhujiang Hosp Dept Radiol Guangzhou Guangdong Peoples R China Pazhou Lab Huangpu Guangzhou Guangdong Peoples R China Guangzhou Med Univ Sch Biomed Engn Guangzhou Guangdong Peoples R China
the harmful radiation dose associated with CT imaging is a major concern because it can cause genetic diseases. Acquiring CT data at low radiation doses has become a pressing goal. Deep learning (DL)-based methods hav... 详细信息
来源: 评论
BigFUSE: Global Context-Aware image Fusion in Dual-View Light-Sheet Fluorescence Microscopy with image Formation Prior  26th
BigFUSE: Global Context-Aware Image Fusion in Dual-View Ligh...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Liu, Yu Mueller, Gesine Navab, Nassir Marr, Carsten Huisken, Jan Peng, Tingying Tech Univ Munich Munich Germany Georg August Univ Goettingen Gottingen Germany Johns Hopkins Univ Baltimore MD USA Helmholtz Munich German Res Ctr Environm Hlth Inst AI Hlth Neuherberg Germany Helmholtz Munich German Res Ctr Environm Hlth Helmholtz AI Neuherberg Germany
Light-sheet fluorescence microscopy (LSFM), a planar illumination technique that enables high-resolution imaging of samples, experiences "defocused" image quality caused by light scattering when photons prop... 详细信息
来源: 评论
Arithmetic Optimization Algorithm assisted Deep Learning Model for Remote Sensing image Classification  5
Arithmetic Optimization Algorithm Assisted Deep Learning Mod...
收藏 引用
5th international conference on Inventive Research in computing Applications, ICIRCA 2023
作者: Josephine Anitha, A. Gladis, D. University of Madras Pg and Research Department of Computer Science Chennai600 005 India Bharathi Women's College Chennai600 108 India
the spatial resolution of remote sensing images (RSI) was continuously enhanced with the advances in RSI technology. As a fundamental unit of RSI interpretation, the scene is an integration of semantics, multiple obje... 详细信息
来源: 评论
Self-supervised Learning via Inter-modal Reconstruction and Feature Projection Networks for Label-Efficient 3D-to-2D Segmentation  26th
Self-supervised Learning via Inter-modal Reconstruction and ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Morano, Jose Aresta, Guilherme Lachinov, Dmitrii Mai, Julia Schmidt-Erfurth, Ursula Bogunovic, Hrvoje Med Univ Vienna Dept Ophthalmol & Optometry Christian Doppler Lab Artificial Intelligence Ret Vienna Austria Med Univ Vienna Dept Ophthalmol & Optometry Lab Ophthalm Image Anal Vienna Austria
Deep learning has become a valuable tool for the automation of certain medical image segmentation tasks, significantly relieving the workload of medical specialists. Some of these tasks require segmentation to be perf... 详细信息
来源: 评论
Do We Really Need that Skip-Connection? Understanding Its Interplay with Task Complexity  26th
Do We Really Need that Skip-Connection? Understanding Its In...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Kamath, Amith Willmann, Jonas Andratschke, Nicolaus Reyes, Mauricio Univ Bern ARTORG Ctr Biomed Engn Res Bern Switzerland Univ Zurich Univ Zurich Hosp Dept Radiat Oncol Zurich Switzerland Paul Scherrer Inst Ctr Proton Therapy Villigen Switzerland Bern Univ Hosp Dept Radiat Oncol Inselspital Bern Switzerland Univ Bern Bern Switzerland
the U-Net architecture has become the preferred model used for medical image segmentation tasks. Since its inception, several variants have been proposed. An important component of the U-Net architecture is the use of... 详细信息
来源: 评论
Transferability-Guided Multi-source Model Adaptation for medical image Segmentation  26th
Transferability-Guided Multi-source Model Adaptation for Med...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Yang, Chen Liu, Yifan Yuan, Yixuan City Univ Hong Kong Dept Elect Engn Hong Kong Peoples R China Chinese Univ Hong Kong Dept Elect Engn Hong Kong Peoples R China
Unsupervised domain adaptation has drawn sustained attentions in medical image segmentation by transferring knowledge from labeled source data to unlabeled target domain. However, most existing approaches assume the s... 详细信息
来源: 评论