咨询与建议

限定检索结果

文献类型

  • 2,658 篇 会议
  • 127 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 2,873 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,384 篇 工学
    • 2,166 篇 计算机科学与技术...
    • 1,124 篇 生物医学工程(可授...
    • 935 篇 软件工程
    • 550 篇 光学工程
    • 298 篇 生物工程
    • 268 篇 电气工程
    • 226 篇 电子科学与技术(可...
    • 183 篇 信息与通信工程
    • 164 篇 控制科学与工程
    • 84 篇 仪器科学与技术
    • 42 篇 核科学与技术
    • 30 篇 力学(可授工学、理...
    • 28 篇 化学工程与技术
    • 24 篇 安全科学与工程
    • 23 篇 机械工程
    • 23 篇 动力工程及工程热...
    • 20 篇 建筑学
  • 1,834 篇 医学
    • 1,359 篇 特种医学
    • 1,009 篇 临床医学
    • 402 篇 基础医学(可授医学...
    • 299 篇 药学(可授医学、理...
    • 209 篇 医学技术(可授医学...
    • 30 篇 公共卫生与预防医...
  • 692 篇 理学
    • 355 篇 数学
    • 354 篇 生物学
    • 329 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 45 篇 化学
  • 108 篇 管理学
    • 66 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
  • 9 篇 教育学
  • 7 篇 农学
  • 4 篇 经济学
  • 2 篇 法学

主题

  • 324 篇 image segmentati...
  • 127 篇 image registrati...
  • 110 篇 deep learning
  • 110 篇 magnetic resonan...
  • 109 篇 medical imaging
  • 65 篇 image enhancemen...
  • 62 篇 image reconstruc...
  • 59 篇 medical image se...
  • 57 篇 segmentation
  • 57 篇 artificial intel...
  • 56 篇 image processing...
  • 46 篇 pattern recognit...
  • 37 篇 health informati...
  • 37 篇 image classifica...
  • 36 篇 image analysis
  • 34 篇 convolutional ne...
  • 33 篇 computer graphic...
  • 33 篇 image processing
  • 31 篇 deformation
  • 31 篇 computerized tom...

机构

  • 32 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 18 篇 ucl ctr med imag...
  • 17 篇 centre for medic...
  • 16 篇 shenzhen univ ma...
  • 16 篇 imperial coll lo...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 college of physi...
  • 10 篇 harvard med sch ...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 50 篇 navab nassir
  • 49 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 24 篇 glocker ben
  • 23 篇 ni dong
  • 22 篇 wang qian
  • 21 篇 hawkes david j.
  • 21 篇 alexander daniel...
  • 21 篇 davatzikos chris...
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 sato yoshinobu
  • 19 篇 fu huazhu
  • 18 篇 yang xin
  • 18 篇 stoyanov danail
  • 18 篇 langs georg
  • 18 篇 bai wenjia

语言

  • 2,820 篇 英文
  • 49 篇 其他
  • 6 篇 中文
检索条件"任意字段=5th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2874 条 记 录,以下是411-420 订阅
排序:
TCEIP: Text Condition Embedded Regression Network for Dental Implant Position Prediction  26th
TCEIP: Text Condition Embedded Regression Network for Dental...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Yang, Xinquan Xie, Jinheng Li, Xuguang Li, Xuechen Li, Xin Shen, Linlin Deng, Yongqiang Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen Peoples R China Shenzhen Univ AI Res Ctr Med Image Anal & Diag Shenzhen Peoples R China Shenzhen Univ Natl Engn Lab Big Data Syst Comp Technol Shenzhen Peoples R China Shenzhen Univ Gen Hosp Dept Stomatol Shenzhen Peoples R China Natl Univ Singapore Singapore Singapore
When deep neural network has been proposed to assist the dentist in designing the location of dental implant, most of them are targeting simple cases where only one missing tooth is available. As a result, literature ... 详细信息
来源: 评论
SegHeD: Segmentation of Heterogeneous Data for Multiple Sclerosis Lesions with Anatomical Constraints
SegHeD: Segmentation of Heterogeneous Data for Multiple Sc...
收藏 引用
Workshop on Longitudinal Disease Tracking and Modeling with medical images and Data, LDTM 2024, 5th international Workshop on Multiscale Multimodal medical Imaging, MMMI 2024, 1st Workshop on Machine Learning for Multimodal/-sensor Healthcare Data, ML4MHD2024 and Workshop on Multimodal Learning and Fusion Across Scales for Clinical Decision Support, ML-CDS 2024 held in conjunction with the 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
作者: Basaran, Berke Doga Zhang, Xinru Matthews, Paul M. Bai, Wenjia Department of Computing Imperial College London London United Kingdom Data Science Institute Imperial College London London United Kingdom Department of Brain Sciences Imperial College London London United Kingdom School of Integrated Circuits and Electronics Beijing Institute of Technology CN Beijing China UK Dementia Research Institute Imperial College London London United Kingdom Rosalind Franklin Institute Didcot United Kingdom
Assessment of lesions and their longitudinal progression from brain magnetic resonance (MR) images plays a crucial role in diagnosing and monitoring multiple sclerosis (MS). Machine learning models have demonstrated a... 详细信息
来源: 评论
Fast Non-Markovian Diffusion Model for Weakly Supervised Anomaly Detection in Brain MR images  26th
Fast Non-Markovian Diffusion Model for Weakly Supervised Ano...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Li, Jinpeng Cao, Hanqun Wang, Jiaze Liu, Furui Dou, Qi Chen, Guangyong Heng, Pheng-Ann Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Peoples R China Chinese Univ Hong Kong Inst Med Intelligence & XR Hong Kong Peoples R China Zhejiang Lab Hangzhou Peoples R China
In medical image analysis, anomaly detection in weakly supervised settings has gained significant interest due to the high cost associated with expert-annotated pixel-wise labeling. Current methods primarily rely on a... 详细信息
来源: 评论
SSL Based Encoder Pretraining for Segmenting a Heterogeneous Chronic Wound image Database with Few Annotations  4th
SSL Based Encoder Pretraining for Segmenting a Heterogeneo...
收藏 引用
4th Diabetic Foot Ulcers Grand Challenge, DFUC 2024 held in Conjunction 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
作者: Picaud, Guillaume Chaumont, Marc Subsol, Gérard Téot, Luc LIRMM équipe ICAR Univ. Montpellier CNRS Montpellier France Univ. Nîmes Place Gabriel Péri Nîmes France Cicat-Occitanie Montpellier France
Segmentation is crucial in medical imaging, but obtaining a sufficient quantity of annotated data is challenging, limiting the development of high-performing deep learning models. Self-supervised learning (SSL) strate... 详细信息
来源: 评论
Source-Free Domain Adaptive Fundus image Segmentation with Class-Balanced Mean Teacher  26th
Source-Free Domain Adaptive Fundus Image Segmentation with C...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Tang, Longxiang Li, Kai He, Chunming Zhang, Yulun Li, Xiu Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen Peoples R China NEC Labs Amer Princeton NJ 08540 USA Swiss Fed Inst Technol Zurich Switzerland
this paper studies source-free domain adaptive fundus image segmentation which aims to adapt a pretrained fundus segmentation model to a target domain using unlabeled images. this is a challenging task because it is h... 详细信息
来源: 评论
Synthesizing 3D Axon Morphology: Springs are All We Need  15th
Synthesizing 3D Axon Morphology: Springs are All We Need
收藏 引用
15th international Workshop on Computational Diffusion MRI, CDMRI 2024, held in conjunction with 27th international conference on medical image computing and computer-assisted intervention, MICCAI 2024
作者: Cui, Ruiqi Bærentzen, J. Andreas Dyrby, Tim B. Department of Applied Mathematics and Computer Science Technical University of Denmark Kongens Lyngby2800 Denmark Danish Research Centre for Magnetic Resonance Centre for Functional and Diagnostic Imaging and Research Copenhagen University Hospital - Amager and Hvidovre Hvidovre2650 Denmark
the realism of digital phantoms for the white matter microstructure is highly valued. Realistic synthesis provides reliable input to generate synthetic diffusion MRI signals for evaluating biophysical models or traini... 详细信息
来源: 评论
Multimodality Frequency Feature Customized Learning for Pediatric Ventricular Septal Defects Identification
Multimodality Frequency Feature Customized Learning for Pedi...
收藏 引用
Workshop on Longitudinal Disease Tracking and Modeling with medical images and Data, LDTM 2024, 5th international Workshop on Multiscale Multimodal medical Imaging, MMMI 2024, 1st Workshop on Machine Learning for Multimodal/-sensor Healthcare Data, ML4MHD2024 and Workshop on Multimodal Learning and Fusion Across Scales for Clinical Decision Support, ML-CDS 2024 held in conjunction with the 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
作者: Jin, Feifei Zhao, Cheng Yang, Peng Xiang, Zhuo Chen, Xunyi Zhang, Yu Fan, Shumin Zhou, Luyao Chen, Weiling Wang, Tianfu Lei, Baiying School of Biomedical Engineering Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging Shenzhen University National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Shenzhen China Ultrasound Department Shenzhen Children Hospital Shenzhen China
Ventricular septal defects (VSD) can be more effectively identified by combining anatomical structural features from 2D grayscale images and blood flow information from Doppler images. Most current algorithms only per... 详细信息
来源: 评论
Beyond MobileNet: An Improved MobileNet for Retinal Diseases  1
收藏 引用
Myopic Maculopathy Analysis Challenge, MMAC 2023, which was a part of the 26th international conference on medical image computing and computer assisted intervention, MICCAI 2023
作者: Zhu, Wenhui Qiu, Peijie Chen, Xiwen Li, Huayu Wang, Hao Lepore, Natasha Dumitrascu, Oana M. Wang, Yalin School of Computing and Augmented Intelligence Arizona State University TempeAZ United States McKeley School of Engineering Washington University in St. Louis St. LouisMO United States School of Computing Clemson University ClemsonSC United States Department of Electrical and Computer Engineering The University of Arizona TucsonAZ United States Department of Neurology Mayo Clinic PhoenixAZ United States CIBORG Lab Department of Radiology Children’s Hospital Los Angeles Los AngelesCA United States
Myopic Maculopathy (MM) is the leading cause of severe vision loss or blindness. Deep learning-based automated tools are indispensable in assisting clinicians in diagnosing and monitoring RD in modern medicine. Recent... 详细信息
来源: 评论
Revolutionizing Brain Tumor Diagnosis: Harnessing Convolutional Neural Networks for Enhanced Prediction and Classification  5
Revolutionizing Brain Tumor Diagnosis: Harnessing Convolutio...
收藏 引用
5th IEEE international conference on computing, Power, and Communication Technologies, IC2PCT 2024
作者: Singh, Aditya Kumar Mishra, Aman Galgotias University School of Computer Science and Engineering Greater Noida India
Diagnosing brain tumors correctly and on time is the only way of effectively planning suitable treatment. Advances made recently in the field of medical imaging and artificial intelligence are leading to better method... 详细信息
来源: 评论
Privacy-Preserving Collaborative AI for Distributed Deep Learning with Cross-sectional Data  5
Privacy-Preserving Collaborative AI for Distributed Deep Lea...
收藏 引用
5th international conference on Bio-engineering for Smart Technologies, BioSMART 2023
作者: Iqbal, Saeed Qureshi, Adnan N. Aurangzeb, Khursheed Javeed, Khalid University of Central Punjab Faculty of Information Technology & Computer Science Department of Computer Science Lahore Pakistan King Saud University College of Computer and Information Sciences Department of Computer Engineering Riyadh Saudi Arabia University of Sharjah College of Computing and Informatics Department of Computer Engineering Sharjah United Arab Emirates
the article discusses the challenges of using deep learning in healthcare due to the lack of extensive medical datasets and concerns about confidentiality and privacy. the article then focuses on the analysis of skin ... 详细信息
来源: 评论