咨询与建议

限定检索结果

文献类型

  • 2,658 篇 会议
  • 127 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 2,873 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,384 篇 工学
    • 2,166 篇 计算机科学与技术...
    • 1,124 篇 生物医学工程(可授...
    • 935 篇 软件工程
    • 550 篇 光学工程
    • 298 篇 生物工程
    • 268 篇 电气工程
    • 226 篇 电子科学与技术(可...
    • 183 篇 信息与通信工程
    • 164 篇 控制科学与工程
    • 84 篇 仪器科学与技术
    • 42 篇 核科学与技术
    • 30 篇 力学(可授工学、理...
    • 28 篇 化学工程与技术
    • 24 篇 安全科学与工程
    • 23 篇 机械工程
    • 23 篇 动力工程及工程热...
    • 20 篇 建筑学
  • 1,834 篇 医学
    • 1,359 篇 特种医学
    • 1,009 篇 临床医学
    • 402 篇 基础医学(可授医学...
    • 299 篇 药学(可授医学、理...
    • 209 篇 医学技术(可授医学...
    • 30 篇 公共卫生与预防医...
  • 692 篇 理学
    • 355 篇 数学
    • 354 篇 生物学
    • 329 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 45 篇 化学
  • 108 篇 管理学
    • 66 篇 图书情报与档案管...
    • 44 篇 管理科学与工程(可...
  • 9 篇 教育学
  • 7 篇 农学
  • 4 篇 经济学
  • 2 篇 法学

主题

  • 324 篇 image segmentati...
  • 127 篇 image registrati...
  • 110 篇 deep learning
  • 110 篇 magnetic resonan...
  • 109 篇 medical imaging
  • 65 篇 image enhancemen...
  • 62 篇 image reconstruc...
  • 59 篇 medical image se...
  • 57 篇 segmentation
  • 57 篇 artificial intel...
  • 56 篇 image processing...
  • 46 篇 pattern recognit...
  • 37 篇 health informati...
  • 37 篇 image classifica...
  • 36 篇 image analysis
  • 34 篇 convolutional ne...
  • 33 篇 computer graphic...
  • 33 篇 image processing
  • 31 篇 deformation
  • 31 篇 computerized tom...

机构

  • 32 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 18 篇 ucl ctr med imag...
  • 17 篇 centre for medic...
  • 16 篇 shenzhen univ ma...
  • 16 篇 imperial coll lo...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 college of physi...
  • 10 篇 harvard med sch ...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 50 篇 navab nassir
  • 49 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 24 篇 glocker ben
  • 23 篇 ni dong
  • 22 篇 wang qian
  • 21 篇 hawkes david j.
  • 21 篇 alexander daniel...
  • 21 篇 davatzikos chris...
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 sato yoshinobu
  • 19 篇 fu huazhu
  • 18 篇 yang xin
  • 18 篇 stoyanov danail
  • 18 篇 langs georg
  • 18 篇 bai wenjia

语言

  • 2,820 篇 英文
  • 49 篇 其他
  • 6 篇 中文
检索条件"任意字段=5th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2874 条 记 录,以下是421-430 订阅
排序:
Democratizing Pathological image Segmentation with Lay Annotators via Molecular-Empowered Learning  26th
Democratizing Pathological Image Segmentation with Lay Annot...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Deng, Ruining Li, Yanwei Li, Peize Wang, Jiacheng Remedios, Lucas W. Agzamkhodjaev, Saydolimkhon Asad, Zuhayr Liu, Quan Cui, Can Wang, Yaohong Wang, Yihan Tang, Yucheng Yang, Haichun Huo, Yuankai Vanderbilt Univ Nashville TN 37215 USA NVIDIA Corp Santa Clara CA USA NVIDIA Corp Bethesda MD USA Vanderbilt Univ Med Ctr Nashville TN 37232 USA
Multi-class cell segmentation in high-resolution Giga-pixel whole slide images (WSI) is critical for various clinical applications. Training such an AI model typically requires labor-intensive pixel-wise manual annota... 详细信息
来源: 评论
Frequency-Mixed Single-Source Domain Generalization for medical image Segmentation  26th
Frequency-Mixed Single-Source Domain Generalization for Medi...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Li, Heng Li, Haojin Zhao, Wei Fu, Huazhu Su, Xiuyun Hu, Yan Liu, Jiang Southern Univ Sci & Technol Res Inst Trustworthy Autonomous Syst Shenzhen Peoples R China Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen Peoples R China Southern Univ Sci & Technol Med Intelligence & Innovat Acad Shenzhen Peoples R China Southern Univ Sci & Technol Hosp Shenzhen Peoples R China Agcy Sci Res & Technol Inst High Performance Comp Singapore Singapore Southern Univ Sci & Technol Guangdong Prov Key Lab Braininspired Intelligent Shenzhen Peoples R China
the annotation scarcity of medical image segmentation poses challenges in collecting sufficient training data for deep learning models. Specifically, models trained on limited data may not generalize well to other uns... 详细信息
来源: 评论
Retinal Age Estimation with Temporal Fundus images Enhanced Progressive Label Distribution Learning  26th
Retinal Age Estimation with Temporal Fundus Images Enhanced ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Yu, Zhen Chen, Ruiye Gui, Peng Ju, Lie Shang, Xianwen Zhu, Zhuoting He, Mingguang Ge, Zongyuan Monash Univ Cent Clin Sch Fac Med Nursing & Hlth Sci Melbourne Vic Australia Monash Univ AIM Hlth Lab Melbourne Vic Australia Monash Univ Monash Med AI Melbourne Vic Australia Wuhan Univ Sch Comp Sci Wuhan Hubei Peoples R China Univ Melbourne Ctr Eye Res Australia Melbourne Vic Australia Univ Melbourne Dept Surg Ophthalmol Melbourne Vic Australia Monash Univ Fac Engn Melbourne Vic Australia Monash Univ Fac IT Melbourne Vic Australia
Retinal age has recently emerged as a reliable ageing biomarker for assessing risks of ageing-related diseases. Several studies propose to train deep learning models to estimate retinal age from fundus images. However... 详细信息
来源: 评论
3D medical image Segmentation with Sparse Annotation via Cross-Teaching Between 3D and 2D Networks  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Cai, Heng Qi, Lei Yu, Qian Shi, Yinghuan Gao, Yang Nanjing Univ Natl Inst Hlth Care Data Sci State Key Lab Novel Software Technol Nanjing Peoples R China Southeast Univ Sch Comp Sci & Engn Nanjing Peoples R China Shandong Womens Univ Sch Data & Comp Sci Jinan Peoples R China
medical image segmentation typically necessitates a large and precisely annotated dataset. However, obtaining pixel-wise annotation is a labor-intensive task that requires significant effort from domain experts, makin... 详细信息
来源: 评论
Adaptive Region Selection for Active Learning in Whole Slide image Semantic Segmentation  26th
Adaptive Region Selection for Active Learning in Whole Slide...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Qiu, Jingna Wilm, Frauke Oettl, Mathias Schlereth, Maja Liu, Chang Heimann, Tobias Aubreville, Marc Breininger, Katharina Friedrich Alexander Univ Erlangen Nurnberg Dept Artificial Intelligence Biomed Engn Erlangen Germany Friedrich Alexander Univ Erlangen Nurnberg Dept Comp Sci Pattern Recognit Lab Erlangen Germany Siemens Healthineers Digital Technol & Innovat Erlangen Germany Tech Hsch Ingolstadt Ingolstadt Germany
the process of annotating histological gigapixel-sized whole slide images (WSIs) at the pixel level for the purpose of training a supervised segmentation model is time-consuming. Region-based active learning (AL) invo... 详细信息
来源: 评论
SATTA: Semantic-Aware Test-Time Adaptation for Cross-Domain medical image Segmentation  26th
SATTA: Semantic-Aware Test-Time Adaptation for Cross-Domain ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Zhang, Yuhan Huang, Kun Chen, Cheng Chen, Qiang Pheng-Ann Heng Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Peoples R China Chinese Univ Hong Kong Inst Med Intelligence & XR Hong Kong Peoples R China Chinese Univ Hong Kong Shenzhen Res Inst Hong Kong Peoples R China Nanjing Univ Sci & Technol Dept Comp Sci & Engn Nanjing Peoples R China Harvard Med Sch Ctr Adv Med Comp & Anal Boston MA 02115 USA Massachusetts Gen Hosp Boston MA 02114 USA
Cross-domain distribution shift is a common problem for medical image analysis because medical images from different devices usually own varied domain distributions. Test-time adaptation (TTA) is a promising solution ... 详细信息
来源: 评论
AI-Based Bone Cancer Detection Using image Processing and CNN  5th
AI-Based Bone Cancer Detection Using Image Processing and CN...
收藏 引用
5th EAI international conference on Cognitive computing and Cyber Physical Systems, IC4S 2024
作者: Srividya, K. Reddy, Gangannagari Varunteja Bakki, Vishwaja Adilakshmi, T. Department of Computer Science and Engineering Vasavi College of Engineering Hyderabad India
this study presents a new Technology-driven approach for early detection of bone cancer using preliminary image processing technologies and neural networks (CNN) used for diagnosing cancer from pathological images. th... 详细信息
来源: 评论
atTRACTive: Semi-automatic White Matter Tract Segmentation Using Active Learning  26th
atTRACTive: Semi-automatic White Matter Tract Segmentation U...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Peretzke, Robin Maier-Hein, Klaus H. Bohn, Jonas Kirchhoff, Yannick Roy, Saikat Oberli-Palma, Sabrina Becker, Daniela Lenga, Pavlina Neher, Peter German Canc Res Ctr Div Med Image Comp MIC Heidelberg Germany Heidelberg Univ Med Fac Heidelberg Heidelberg Germany German Canc Consortium DKTK Partner Site Heidelberg Heidelberg Germany NCT Heidelberg Natl Ctr Tumor Dis NCT Heidelberg Germany DKFZ Heidelberg Germany Univ Med Ctr Heidelberg Heidelberg Germany Univ Heidelberg Hosp Pattern Anal & Learning Grp Heidelberg Germany HIDSS4Health Helmholtz Informat & Data Sci Sch Hlth Heidelberg Germany Heidelberg Univ Fac Math & Comp Sci Heidelberg Germany Heidelberg Univ Fac Biosci Heidelberg Germany Univ Heidelberg Hosp Dept Neurosurg Heidelberg Germany IU Int Univ Appl Sci Erfurt Germany
Accurately identifying white matter tracts in medical images is essential for various applications, including surgery planning and tract-specific analysis. Supervised machine learning models have reached state-of-the-... 详细信息
来源: 评论
Coupling Bracket Segmentation and Tooth Surface Reconstruction on 3D Dental Models  26th
Coupling Bracket Segmentation and Tooth Surface Reconstructi...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Tan, Yuwen Xiang, Xiang Chen, Yifeng Jing, Hongyi Ye, Shiyang Xue, Chaoran Xu, Hui Huazhong Univ Sci & Technol Minist Educ Key Lab Image Proc & Intelligent Control Sch Artificial Intelligence & Automat Wuhan Peoples R China Sichuan Univ West China Hosp Stomatol State Key Lab Oral Dis Natl Clin Res Ctr Oral Dis Chengdu Peoples R China
Delineating and removing brackets on 3D dental models and then reconstructing the tooth surface can enable orthodontists to premake retainers for patients. It eliminates the waiting time and avoids the change of tooth... 详细信息
来源: 评论
Learning Iterative Optimisation for Deformable image Registration of Lung CT with Recurrent Convolutional Networks  25th
Learning Iterative Optimisation for Deformable Image Registr...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Falta, Fenja Hansen, Lasse Heinrich, Mattias P. Univ Lubeck Inst Med Informat Lubeck Germany
Deep learning-based methods for deformable image registration have continually been increasing in accuracy. However, conventional methods using optimisation remain ubiquitous, as they often outperform deep learning-ba... 详细信息
来源: 评论