咨询与建议

限定检索结果

文献类型

  • 2,673 篇 会议
  • 128 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 2,889 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,393 篇 工学
    • 2,175 篇 计算机科学与技术...
    • 1,128 篇 生物医学工程(可授...
    • 934 篇 软件工程
    • 549 篇 光学工程
    • 301 篇 生物工程
    • 271 篇 电气工程
    • 227 篇 电子科学与技术(可...
    • 189 篇 信息与通信工程
    • 169 篇 控制科学与工程
    • 85 篇 仪器科学与技术
    • 42 篇 核科学与技术
    • 30 篇 力学(可授工学、理...
    • 28 篇 化学工程与技术
    • 24 篇 动力工程及工程热...
    • 24 篇 安全科学与工程
    • 23 篇 机械工程
    • 20 篇 建筑学
  • 1,842 篇 医学
    • 1,363 篇 特种医学
    • 1,009 篇 临床医学
    • 402 篇 基础医学(可授医学...
    • 299 篇 药学(可授医学、理...
    • 209 篇 医学技术(可授医学...
    • 33 篇 公共卫生与预防医...
  • 697 篇 理学
    • 359 篇 数学
    • 354 篇 生物学
    • 329 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 46 篇 化学
  • 112 篇 管理学
    • 69 篇 图书情报与档案管...
    • 45 篇 管理科学与工程(可...
  • 9 篇 教育学
  • 7 篇 农学
  • 5 篇 经济学
  • 3 篇 法学

主题

  • 330 篇 image segmentati...
  • 127 篇 image registrati...
  • 117 篇 deep learning
  • 112 篇 magnetic resonan...
  • 108 篇 medical imaging
  • 65 篇 image enhancemen...
  • 62 篇 image reconstruc...
  • 61 篇 medical image se...
  • 57 篇 segmentation
  • 57 篇 artificial intel...
  • 56 篇 image processing...
  • 46 篇 pattern recognit...
  • 39 篇 convolutional ne...
  • 38 篇 image classifica...
  • 37 篇 health informati...
  • 36 篇 image analysis
  • 33 篇 computer graphic...
  • 32 篇 image processing
  • 31 篇 deformation
  • 31 篇 computerized tom...

机构

  • 32 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 18 篇 ucl ctr med imag...
  • 17 篇 centre for medic...
  • 16 篇 shenzhen univ ma...
  • 16 篇 imperial coll lo...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 shanghai united ...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 11 篇 department of co...
  • 10 篇 college of physi...
  • 10 篇 harvard med sch ...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 51 篇 navab nassir
  • 49 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 24 篇 glocker ben
  • 23 篇 ni dong
  • 22 篇 wang qian
  • 21 篇 hawkes david j.
  • 21 篇 alexander daniel...
  • 21 篇 davatzikos chris...
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 sato yoshinobu
  • 19 篇 fu huazhu
  • 18 篇 yang xin
  • 18 篇 stoyanov danail
  • 18 篇 langs georg
  • 18 篇 bai wenjia

语言

  • 2,798 篇 英文
  • 87 篇 其他
  • 7 篇 中文
检索条件"任意字段=5th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2890 条 记 录,以下是571-580 订阅
排序:
Fourier Test-Time Adaptation with Multi-level Consistency for Robust Classification  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Huang, Yuhao Yang, Xin Huang, Xiaoqiong Zhou, Xinrui Chi, Haozhe Dou, Haoran Hu, Xindi Wang, Jian Deng, Xuedong Ni, Dong Shenzhen Univ Hlth Sci Ctr Sch Biomed Engn Natl Reg Key Technol Engn Lab Med Ultrasound Shenzhen Peoples R China Shenzhen Univ Med Ultrasound Image Comp MUSIC Lab Shenzhen Peoples R China Shenzhen Univ Marshall Lab Biomed Engn Shenzhen Peoples R China Zhejiang Univ ZJU UIUC Inst Hangzhou Peoples R China Univ Leeds Ctr Computat Imaging & Simulat Technol Biomed Leeds W Yorkshire England Shenzhen RayShape Med Technol Co Ltd Shenzhen Peoples R China Nanjing Med Univ Sch Biomed Engn & Informat Nanjing Peoples R China Nanjing Med Univ Affiliated Suzhou Hosp Suzhou Peoples R China
Deep classifiers may encounter significant performance degradation when processing unseen testing data from varying centers, vendors, and protocols. Ensuring the robustness of deep models against these domain shifts i... 详细信息
来源: 评论
SMESwin Unet: Merging CNN and Transformer for medical image Segmentation  25th
SMESwin Unet: Merging CNN and Transformer for Medical Image ...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Wang, Ziheng Min, Xiongkuo Shi, Fangyu Jin, Ruinian Nawrin, Saida S. Yu, Ichen Nagatomi, Ryoichi Tohoku Univ Grad Sch Biomed Engn Div Biomed Engn Hlth & Welf Sendai Japan Shanghai Jiao Tong Univ Inst Image Commun & Network Engn Shanghai Peoples R China Tohoku Univ Grad Sch Med Dept Med & Sci Sports & Exercise Sendai Japan
Vision transformer is the new favorite paradigm in medical image segmentation since last year, which surpassed the traditional CNN counterparts in quantitative metrics. the significant advantage of ViTs is to utilize ... 详细信息
来源: 评论
Semi-supervised medical image Segmentation Using Cross-Model Pseudo-Supervision with Shape Awareness and Local Context Constraints  25th
Semi-supervised Medical Image Segmentation Using Cross-Model...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Liu, Jinhua Desrosiers, Christian Zhou, Yuanfeng Shandong Univ Sch Software Jinan Peoples R China Ecole Technol Super Software & IT Engn Dept Montreal PQ Canada
In semi-supervised medical image segmentation, the limited amount of labeled data available for training is often insufficient to learn the variability and complexity of target regions. To overcome these challenges, w... 详细信息
来源: 评论
GSMorph: Gradient Surgery for Cine-MRI Cardiac Deformable Registration  26th
GSMorph: Gradient Surgery for Cine-MRI Cardiac Deformable Re...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Dou, Haoran Bi, Ning Han, Luyi Huang, Yuhao Mann, Ritse Yang, Xin Ni, Dong Ravikumar, Nishant Frangi, Alejandro F. Huang, Yunzhi Univ Leeds Ctr Computat Imaging & Simulat Technol Biomed CIS Leeds W Yorkshire England Radboud Univ Nijmegen Dept Radiol & Nucl Med Med Ctr Nijmegen Netherlands Netherlands Canc Inst Dept Radiol Amsterdam Netherlands Shenzhen Univ Sch Biomed Engn Hlth Sci Ctr Natl Reg Key Technol Engn Lab Med Ultrasound Shenzhen Peoples R China Shenzhen Univ Med Ultrasound Image Comp MUSIC Lab Shenzhen Peoples R China Shenzhen Univ Marshall Lab Biomed Engn Shenzhen Peoples R China Shenzhen RayShape Med Technol Co Ltd Shenzhen Peoples R China Univ Manchester Sch Comp Sci & Hlth Sci Div Informat Imaging & Data Sci Manchester Lancs England Katholieke Univ Leuven Med Imaging Res Ctr MIRC Elect Engn Dept Leuven Belgium Katholieke Univ Leuven Med Imaging Res Ctr MIRC Cardiovasc Sci Dept Leuven Belgium Alan Turing Inst London England Nanjing Univ Informat Sci & Technol Inst Med Sch Artificial Intelligence Nanjing Peoples R China
Deep learning-based deformable registration methods have been widely investigated in diverse medical applications. Learning-based deformable registration relies on weighted objective functions trading off registration... 详细信息
来源: 评论
S2ME: Spatial-Spectral Mutual Teaching and Ensemble Learning for Scribble-Supervised Polyp Segmentation  26th
S<SUP>2</SUP>ME: Spatial-Spectral Mutual Teaching and Ensemb...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wang, An Xu, Mengya Zhang, Yang Islam, Mobarakol Ren, Hongliang Chinese Univ Hong Kong Shun Hing Inst Adv Engn SHIAE Dept Elect Engn Hong Kong Peoples R China Natl Univ Singapore Dept Biomed Engn Singapore Singapore Hubei Univ Technol Sch Mech Engn Wuhan Peoples R China UCL Dept Med Phys & Biomed Engn Wellcome EPSRC Ctr Intervent & Surg Sci WEISS London England
Fully-supervised polyp segmentation has accomplished significant triumphs over the years in advancing the early diagnosis of colorectal cancer. However, label-efficient solutions from weak supervision like scribbles a... 详细信息
来源: 评论
Head and Neck Tumor Segmentation of MRI from Pre-and Mid-Radiotherapy with Pre-Training, Data Augmentation and Dual Flow UNet  1st
Head and Neck Tumor Segmentation of MRI from Pre-and Mid-Rad...
收藏 引用
1st Challenge on Head and Neck Tumor Segmentation for MRI-Guided Applications, HNTS-MRG 2024, Held in Conjunction with 27th international conference on medical image computing and computer-assisted intervention, MICCAI 2024
作者: Wang, Litingyu Liao, Wenjun Zhang, Shichuan Wang, Guotai University of Electronic Science and Technology of China Chengdu China Shang AI Laboratory Shanghai China Department of Radiation Oncology Sichuan Cancer Hospital & Institute Sichuan Cancer Center Chengdu China
Head and neck tumors and metastatic lymph nodes are crucial for treatment planning and prognostic analysis. Accurate segmentation and quantitative analysis of these structures require pixel-level annotation, making au... 详细信息
来源: 评论
Generative Adversarial Networks for Self-Supervised Transfer Learning in medical image Classification  5th
Generative Adversarial Networks for Self-Supervised Transfer...
收藏 引用
5th international conference on Data Science, Machine Learning and Applications, ICDSMLA 2023
作者: Kumar, Rohit Yogeetha, B.R. Savita Mehta, Deepak School of Engineering and Computing Dev Bhoomi Uttarakhand University Dehradun India School of Computer Science and Engineering Presidency University Karnataka Bengaluru India Maharishi School of Engineering and Technology Maharishi University of Information Technology Uttar Pradesh Lucknow India Karnataka Bengaluru India
Self-supervised transfer mastering for clinical picture analysis is a method that uses deep getting-to-know procedures to research large units of medical imaging facts without using guide labels. By way of using switc... 详细信息
来源: 评论
Learning-Based US-MR Liver image Registration with Spatial Priors  25th
Learning-Based US-MR Liver Image Registration with Spatial P...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Zeng, Qi Mohammed, Shahed Pang, Emily H. T. Schneider, Caitlin Honarvar, Mohammad Lobo, Julio Hu, Changhong Jago, James Ng, Gary Rohling, Robert Salcudean, Septimiu E. Univ British Columbia Dept Elect & Comp Engn Vancouver BC Canada Vancouver Gen Hosp Vancouver BC Canada Philips Healthcare Bothell WA USA Univ British Columbia Dept Mech Engn Vancouver BC Canada
Registration of multi-modality images is necessary for the assessment of liver disease. In this work, we present an image registration workflow which is designed to achieve reliable alignment for subject-specific magn... 详细信息
来源: 评论
Momentum Contrastive Voxel-Wise Representation Learning for Semi-supervised Volumetric medical image Segmentation  1
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: You, Chenyu Zhao, Ruihan Staib, Lawrence H. Duncan, James S. Yale Univ Elect Engn New Haven CT 06520 USA Univ Texas Austin Elect & Comp Engn Austin TX USA Yale Sch Med Radiol & Biomed Imaging New Haven CT USA Yale Univ Biomed Engn New Haven CT USA
Contrastive learning (CL) aims to learn useful representation without relying on expert annotations in the context of medical image segmentation. Existing approaches mainly contrast a single positive vector (i.e., an ... 详细信息
来源: 评论
Delving into Local Features for Open-Set Domain Adaptation in Fundus image Analysis  25th
Delving into Local Features for Open-Set Domain Adaptation i...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Zhou, Yi Bai, Shaochen Zhou, Tao Zhang, Yu Fu, Huazhu Southeast Univ Sch Comp Sci & Engn Nanjing Peoples R China Nanjing Univ Sci & Technol Nanjing Peoples R China ASTAR Singapore Singapore
Unsupervised domain adaptation (UDA) has received significant attention in medical image analysis when labels are only available for the source domain data but not for the target domain. Previous UDA methods mainly fo... 详细信息
来源: 评论