咨询与建议

限定检索结果

文献类型

  • 2,673 篇 会议
  • 128 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 2,889 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,393 篇 工学
    • 2,175 篇 计算机科学与技术...
    • 1,128 篇 生物医学工程(可授...
    • 934 篇 软件工程
    • 549 篇 光学工程
    • 301 篇 生物工程
    • 271 篇 电气工程
    • 227 篇 电子科学与技术(可...
    • 189 篇 信息与通信工程
    • 169 篇 控制科学与工程
    • 85 篇 仪器科学与技术
    • 42 篇 核科学与技术
    • 30 篇 力学(可授工学、理...
    • 28 篇 化学工程与技术
    • 24 篇 动力工程及工程热...
    • 24 篇 安全科学与工程
    • 23 篇 机械工程
    • 20 篇 建筑学
  • 1,842 篇 医学
    • 1,363 篇 特种医学
    • 1,009 篇 临床医学
    • 402 篇 基础医学(可授医学...
    • 299 篇 药学(可授医学、理...
    • 209 篇 医学技术(可授医学...
    • 33 篇 公共卫生与预防医...
  • 697 篇 理学
    • 359 篇 数学
    • 354 篇 生物学
    • 329 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 46 篇 化学
  • 112 篇 管理学
    • 69 篇 图书情报与档案管...
    • 45 篇 管理科学与工程(可...
  • 9 篇 教育学
  • 7 篇 农学
  • 5 篇 经济学
  • 3 篇 法学

主题

  • 330 篇 image segmentati...
  • 127 篇 image registrati...
  • 117 篇 deep learning
  • 112 篇 magnetic resonan...
  • 108 篇 medical imaging
  • 65 篇 image enhancemen...
  • 62 篇 image reconstruc...
  • 61 篇 medical image se...
  • 57 篇 segmentation
  • 57 篇 artificial intel...
  • 56 篇 image processing...
  • 46 篇 pattern recognit...
  • 39 篇 convolutional ne...
  • 38 篇 image classifica...
  • 37 篇 health informati...
  • 36 篇 image analysis
  • 33 篇 computer graphic...
  • 32 篇 image processing
  • 31 篇 deformation
  • 31 篇 computerized tom...

机构

  • 32 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 18 篇 ucl ctr med imag...
  • 17 篇 centre for medic...
  • 16 篇 shenzhen univ ma...
  • 16 篇 imperial coll lo...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 shanghai united ...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 11 篇 department of co...
  • 10 篇 college of physi...
  • 10 篇 harvard med sch ...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 51 篇 navab nassir
  • 49 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 24 篇 glocker ben
  • 23 篇 ni dong
  • 22 篇 wang qian
  • 21 篇 hawkes david j.
  • 21 篇 alexander daniel...
  • 21 篇 davatzikos chris...
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 sato yoshinobu
  • 19 篇 fu huazhu
  • 18 篇 yang xin
  • 18 篇 stoyanov danail
  • 18 篇 langs georg
  • 18 篇 bai wenjia

语言

  • 2,798 篇 英文
  • 87 篇 其他
  • 7 篇 中文
检索条件"任意字段=5th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2890 条 记 录,以下是651-660 订阅
排序:
BMD-GAN: Bone Mineral Density Estimation Using X-Ray image Decomposition into Projections of Bone-Segmented Quantitative Computed Tomography Using Hierarchical Learning  25th
BMD-GAN: Bone Mineral Density Estimation Using X-Ray Image D...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Gu, Yi Otake, Yoshito Uemura, Keisuke Soufi, Mazen Takao, Masaki Sugano, Nobuhiko Sato, Yoshinobu Nara Inst Sci & Technol Grad Sch Sci & Technol Div Informat Sci Ikoma Japan Osaka Univ Dept Orthopaed Grad Sch Med Suita Japan Ehime Univ Dept Bone & Joint Surg Grad Sch Med Matsuyama Japan Osaka Univ Dept Orthopaed Med Engn Grad Sch Med Suita Japan
We propose a method for estimating the bone mineral density (BMD) from a plain x-ray image. Dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) provide high accuracy in diagnosing osteopo... 详细信息
来源: 评论
Accurate and Explainable image-Based Prediction Using a Lightweight Generative Model  25th
Accurate and Explainable Image-Based Prediction Using a Ligh...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Mauri, Chiara Cerri, Stefano Puonti, Oula Muehlau, Mark Van Leemput, Koen Tech Univ Denmark Dept Hlth Technol Lyngby Denmark Harvard Med Sch Massachusetts Gen Hosp Athinoula A Martinos Ctr Biomed Imaging Charlestown MA USA Copenhagen Univ Hosp Hvidovre Danish Res Ctr Magnet Resonance Ctr Funct & Diagnost Imaging & Res Hvidovre Denmark Tech Univ Munich Dept Neurol Munich Germany Tech Univ Munich Sch Med TUM Neuroimaging Ctr Munich Germany
Recent years have seen a growing interest in methods for predicting a variable of interest, such as a subject's age, from individual brain scans. Although the field has focused strongly on nonlinear discriminative... 详细信息
来源: 评论
Unsupervised Contrastive Learning of image Representations from Ultrasound Videos with Hard Negative Mining  1
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Basu, Soumen Singla, Somanshu Gupta, Mayank Rana, Pratyaksha Gupta, Pankaj Arora, Chetan Indian Inst Technol Delhi India Postgrad Inst Med Educ & Res Chandigarh India
Rich temporal information and variations in viewpoints make video data an attractive choice for learning image representations using unsupervised contrastive learning (UCL) techniques. State-of-the-art (SOTA) contrast... 详细信息
来源: 评论
Test Time Transform Prediction for Open Set Histopathological image Recognition  25th
Test Time Transform Prediction for Open Set Histopathologica...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Galdran, Adrian Hewitt, Katherine J. Laleh, Narmin Ghaffari Kather, Jakob N. Carneiro, Gustavo Gonzalez Ballester, Miguel A. Univ Pompeu Fabra Dept Informat & Commun Technol BCN Medtech Barcelona Spain Univ Hosp RWTH Aachen Dept Med 3 Aachen Germany Univ Adelaide Adelaide SA Australia Catalan Inst Res & Adv Studies ICREA Barcelona Spain
Tissue typology annotation in Whole Slide histological images is a complex and tedious, yet necessary task for the development of computational pathology models. We propose to address this problem by applying Open Set... 详细信息
来源: 评论
Denoising for Relaxing: Unsupervised Domain Adaptive Fundus image Segmentation Without Source Data  25th
Denoising for Relaxing: Unsupervised Domain Adaptive Fundus ...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Xu, Zhe Lu, Donghuan Wang, Yixin Luo, Jie Wei, Dong Zheng, Yefeng Tong, Raymond Kai-Yu Chinese Univ Hong Kong Dept Biomed Engn Hong Kong Peoples R China Tencent Healthcare Co Jarvis Lab Shenzhen Peoples R China Stanford Univ Dept Bioengn Stanford CA USA Harvard Med Sch Brigham & Womens Hosp Boston MA USA
Recently, unsupervised domain adaptation (UDA) has been actively explored for multi-site fundus image segmentation with domain discrepancy. Despite relaxing the requirement of target labels, typical UDA still requires... 详细信息
来源: 评论
Identifying Phenotypic Concepts Discriminating Molecular Breast Cancer Sub-Types  25th
Identifying Phenotypic Concepts Discriminating Molecular Bre...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Fuerboeck, Christoph Perkonigg, Matthias Helbich, thomas Pinker, Katja Romeo, Valeria Langs, Georg Med Univ Vienna Dept Biomed Imaging & Image Guided Therapy Computat Imaging Res Lab Vienna Austria Med Univ Vienna Div Mol & Struct Preclin Imaging Dept Biomed Imaging & Image Guided Therapy Vienna Austria Mem Sloan Kettering Canc Ctr Breast Imaging Serv Dept Radiol New York NY USA Univ Naples Federico II Dept Adv Biomed Sci Naples Italy
Molecular breast cancer sub-types derived from core-biopsy are central for individual outcome prediction and treatment decisions. Determining sub-types by non-invasive imaging procedures would benefit early assessment... 详细信息
来源: 评论
Self-supervised 3D Anatomy Segmentation Using Self-distilled Masked image Transformer (SMIT)  1
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Jiang, Jue Tyagi, Neelam Tringale, Kathryn Crane, Christopher Veeraraghavan, Harini Mem Sloan Kettering Canc Ctr Dept Med Phys New York NY 10021 USA Mem Sloan Kettering Canc Ctr Dept Radiat Oncol 1275 York Ave New York NY 10021 USA
Vision transformers efficiently model long-range context and thus have demonstrated impressive accuracy gains in several image analysis tasks including segmentation. However, such methods need large labeled datasets f... 详细信息
来源: 评论
Online Reflective Learning for Robust medical image Segmentation  25th
Online Reflective Learning for Robust Medical Image Segmenta...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Huang, Yuhao Yang, Xin Huang, Xiaoqiong Liang, Jiamin Zhou, Xinrui Chen, Cheng Dou, Haoran Hu, Xindi Cao, Yan Ni, Dong Shenzhen Univ Sch Biomed Engn Hlth Sci Ctr Natl Reg Key Technol Engn Lab Med Ultrasound Shenzhen Peoples R China Shenzhen Univ Med Ultrasound Image Comp MUSIC Lab Shenzhen Peoples R China Shenzhen Univ Marshall Lab Biomed Engn Shenzhen Peoples R China Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Peoples R China Univ Leeds Ctr Computat Imaging & Simulat Technol Biomed CIS Leeds England Shenzhen RayShape Med Technol Co Ltd Shenzhen Peoples R China
Deep segmentation models often face the failure risks when the testing image presents unseen distributions. Improving model robustness against these risks is crucial for the large-scale clinical application of deep mo... 详细信息
来源: 评论
Joint Class-Affinity Loss Correction for Robust medical image Segmentation with Noisy Labels  1
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Guo, Xiaoqing Yuan, Yixuan City Univ Hong Kong Dept Elect Engn Kowloon Tong Hong Kong Peoples R China
Noisy labels collected with limited annotation cost prevent medical image segmentation algorithms from learning precise semantic correlations. Previous segmentation arts of learning with noisy labels merely perform a ... 详细信息
来源: 评论
Variational Auto encoders for Improved Breast Cancer Classification  5
Variational Auto encoders for Improved Breast Cancer Classif...
收藏 引用
5th international conference on Innovative Data Communication Technologies and Application, ICIDCA 2024
作者: Sreelekshmi, V. Nair, Jyothisha J. Department of Computer Science and Engineering Amrita School of Computing Amrita Vishwa Vidyapeetham Amritapuri India
Among women breast cancer is the second leading cause of cancer. Emergence of Artificial Intelligence(AI) in the medical care leads to good survival rate by diagnosing and effective prognosis of the breast cancer pati... 详细信息
来源: 评论