咨询与建议

限定检索结果

文献类型

  • 2,673 篇 会议
  • 128 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 2,889 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,393 篇 工学
    • 2,175 篇 计算机科学与技术...
    • 1,128 篇 生物医学工程(可授...
    • 934 篇 软件工程
    • 549 篇 光学工程
    • 301 篇 生物工程
    • 271 篇 电气工程
    • 227 篇 电子科学与技术(可...
    • 189 篇 信息与通信工程
    • 169 篇 控制科学与工程
    • 85 篇 仪器科学与技术
    • 42 篇 核科学与技术
    • 30 篇 力学(可授工学、理...
    • 28 篇 化学工程与技术
    • 24 篇 动力工程及工程热...
    • 24 篇 安全科学与工程
    • 23 篇 机械工程
    • 20 篇 建筑学
  • 1,842 篇 医学
    • 1,363 篇 特种医学
    • 1,009 篇 临床医学
    • 402 篇 基础医学(可授医学...
    • 299 篇 药学(可授医学、理...
    • 209 篇 医学技术(可授医学...
    • 33 篇 公共卫生与预防医...
  • 697 篇 理学
    • 359 篇 数学
    • 354 篇 生物学
    • 329 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 46 篇 化学
  • 112 篇 管理学
    • 69 篇 图书情报与档案管...
    • 45 篇 管理科学与工程(可...
  • 9 篇 教育学
  • 7 篇 农学
  • 5 篇 经济学
  • 3 篇 法学

主题

  • 330 篇 image segmentati...
  • 127 篇 image registrati...
  • 117 篇 deep learning
  • 112 篇 magnetic resonan...
  • 108 篇 medical imaging
  • 65 篇 image enhancemen...
  • 62 篇 image reconstruc...
  • 61 篇 medical image se...
  • 57 篇 segmentation
  • 57 篇 artificial intel...
  • 56 篇 image processing...
  • 46 篇 pattern recognit...
  • 39 篇 convolutional ne...
  • 38 篇 image classifica...
  • 37 篇 health informati...
  • 36 篇 image analysis
  • 33 篇 computer graphic...
  • 32 篇 image processing
  • 31 篇 deformation
  • 31 篇 computerized tom...

机构

  • 32 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 18 篇 ucl ctr med imag...
  • 17 篇 centre for medic...
  • 16 篇 shenzhen univ ma...
  • 16 篇 imperial coll lo...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 shanghai united ...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 11 篇 department of co...
  • 10 篇 college of physi...
  • 10 篇 harvard med sch ...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 51 篇 navab nassir
  • 49 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 24 篇 glocker ben
  • 23 篇 ni dong
  • 22 篇 wang qian
  • 21 篇 hawkes david j.
  • 21 篇 alexander daniel...
  • 21 篇 davatzikos chris...
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 sato yoshinobu
  • 19 篇 fu huazhu
  • 18 篇 yang xin
  • 18 篇 stoyanov danail
  • 18 篇 langs georg
  • 18 篇 bai wenjia

语言

  • 2,798 篇 英文
  • 87 篇 其他
  • 7 篇 中文
检索条件"任意字段=5th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2890 条 记 录,以下是661-670 订阅
排序:
Diffusion Deformable Model for 4D Temporal medical image Generation  25th
Diffusion Deformable Model for 4D Temporal Medical Image Gen...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Kim, Boah Ye, Jong Chul Korea Adv Inst Sci & Technol Daejeon South Korea
Temporal volume images with 3D-ht (4D) information are often used in medical imaging to statistically analyze temporal dynamics or capture disease progression. Although deep-learning-based generative models for natura... 详细信息
来源: 评论
Domain Adaptation Using Generative Adversarial Networks for medical image Synthesis  5th
Domain Adaptation Using Generative Adversarial Networks for ...
收藏 引用
5th international conference on Data Science, Machine Learning and Applications, ICDSMLA 2023
作者: Ganesh, D. Verma, Upendra K. Patil, Smita Alam, Intekhab Karnataka Bangalore India Department of Computer Science and Engineering School of Engineering and Computing Dev Bhoomi Uttarakhand University Navgaon Manduwala Dehradun India 3School of Computer Science and Engineering Presidency University Karnataka Bengaluru India Maharishi School of Engineering and Technology Maharishi University of Information Technology Uttar Pradesh Lucknow India
Latest advancements in state-of-the-art scientific photograph evaluation depend heavily on the availability of large new datasets of cutting-edge annotated scientific photographs for version training. Unfortunately, o... 详细信息
来源: 评论
A Novel Approach to Enhance Effectiveness of image Segmentation Techniques on Extremely Noisy medical images  5th
A Novel Approach to Enhance Effectiveness of Image Segmentat...
收藏 引用
5th international conference on Recent Trends in image Processing and Pattern Recognition (RTIP2R)
作者: Deshpande, Anuja LAD Coll Dept Elect Seminary Hills Campus Nagpur 440006 Maharashtra India
through this study, I contribute towards segmentation of liver areas and have proposed additional improvements, which positively influence image segmentation. In this study, I have subjected medical images from LiTS -... 详细信息
来源: 评论
RTN: Reinforced Transformer Network for Coronary CT Angiography Vessel-level image Quality Assessment  25th
RTN: Reinforced Transformer Network for Coronary CT Angiogra...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Lu, Yiting Fu, Jun Li, Xin Zhou, Wei Liu, Sen Zhang, Xinxin wu, Wei Jia, Congfu Liu, Ying Chen, Zhibo Univ Sci & Technol China Hefei Anhui Peoples R China Dalian Med Univ Affiliated Hosp 1 Dalian Liaoning Peoples R China
Coronary CT Angiography (CCTA) is susceptible to various distortions (e.g., artifacts and noise), which severely compromise the exact diagnosis of cardiovascular diseases. the appropriate CCTA Vessel-level image Quali... 详细信息
来源: 评论
Lesion-Aware Contrastive Representation Learning for Histopathology Whole Slide images Analysis  25th
Lesion-Aware Contrastive Representation Learning for Histopa...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Li, Jun Zheng, Yushan Wu, Kun Shi, Jun Xie, Fengying Jiang, Zhiguo Beihang Univ Sch Astronaut Image Proc Ctr Beijing 102206 Peoples R China Beihang Univ Beijing Adv Innovat Ctr Biomed Engn Sch Engn Med Beijing 100191 Peoples R China Hefei Univ Technol Sch Software Hefei 230601 Peoples R China
image representation learning has been a key challenge to promote the performance of the histopathological whole slide images analysis. the previous representation learning methods followed the supervised learning par... 详细信息
来源: 评论
An End-to-End Combinatorial Optimization Method for R-band Chromosome Recognition with Grouping Guided Attention  1
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Xia, Chao Wang, Jiyue Qin, Yulei Gu, Yun Chen, Bing Yang, Jie Shanghai Jiao Tong Univ Inst Image Proc & Pattern Recognit Shanghai Peoples R China Shanghai Jiao Tong Univ Inst Med Robot Shanghai Peoples R China Shanghai Jiao Tong Univ Sch Med Shanghai Inst Hematol Ruijin Hosp Shanghai Peoples R China
Chromosome recognition is a critical and time-consuming process in karyotyping, especially for R-band chromosomes with poor visualization quality. Existing computer-aided chromosome recognition methods mainly focus on... 详细信息
来源: 评论
UASSR: Unsupervised Arbitrary Scale Super-Resolution Reconstruction of Single Anisotropic 3D images via Disentangled Representation Learning  25th
UASSR: Unsupervised Arbitrary Scale Super-Resolution Reconst...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Wang, Jiale Wang, Runze Tao, Rong Zheng, Guoyan Shanghai Jiao Tong Univ Inst Med Robot Sch Biomed Engn 800 Dongchuan Rd Shanghai 200240 Peoples R China
Deep learning-based single image super resolution (SISR) algorithms have great potential to recover high-resolution (HR) images from low-resolution (LR) inputs. However, most studies require paired LR and HR images fo... 详细信息
来源: 评论
the Dice Loss in the Context of Missing or Empty Labels: Introducing Φ and ε  25th
The Dice Loss in the Context of Missing or Empty Labels: Int...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Tilborghs, Sofie Bertels, Jeroen Robben, David Vandermeulen, Dirk Maes, Frederik Katholieke Univ Leuven ESAT PSI Dept Elect Engn Leuven Belgium UZ Leuven Med Imaging Res Ctr Leuven Belgium Icometrix Kolonel Begaultlaan Ib-12 Leuven Belgium
Albeit the Dice loss is one of the dominant loss functions in medical image segmentation, most research omits a closer look at its derivative, i.e. the real motor of the optimization when using gradient descent. In th... 详细信息
来源: 评论
Transformer Based Multiple Instance Learning for Weakly Supervised Histopathology image Segmentation  25th
Transformer Based Multiple Instance Learning for Weakly Supe...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Qian, Ziniu Li, Kailu Lai, Maode Chang, Eric I-Chao Wei, Bingzheng Fan, Yubo Xu, Yan Beihang Univ State Key Lab Software Dev Environm Key Lab Biomechan Mechanobiol Minist Educ Beijing 100191 Peoples R China Beihang Univ Beijing Adv Innovat Ctr Biomed Engn Sch Biol Sci & Med Engn Beijing 100191 Peoples R China China Pharmaceut Univ Nanjing 210009 Peoples R China Zhejiang Univ Hangzhou 310058 Peoples R China Microsoft Res Beijing 100080 Peoples R China Xiaomi Corp Beijing 100085 Peoples R China
Hispathological image segmentation algorithms play a critical role in computer aided diagnosis technology. the development of weakly supervised segmentation algorithm alleviates the problem of medical image annotation... 详细信息
来源: 评论
Reinforcement Learning Driven Intra-modal and Inter-modal Representation Learning for 3D medical image Classification  1
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Zhu, Zhonghang Wang, Liansheng Magnier, Baptiste Zhu, Lei Zhang, Defu Yu, Lequan Xiamen Univ Sch Informat Dept Comp Sci Xiamen Peoples R China Univ Montpellier IMT Mines Ales Euromov Digital Hlth Motion Ales France Hong Kong Univ Sci & Technol Guangzhou Guangzhou Peoples R China Hong Kong Univ Sci & Technol Hong Kong Peoples R China Univ Hong Kong Dept Stat & Actuarial Sci Hong Kong Peoples R China
Multi-modality 3D medical images play an important role in the clinical practice. Due to the effectiveness of exploring the complementary information among different modalities, multi-modality learning has attracted i... 详细信息
来源: 评论