咨询与建议

限定检索结果

文献类型

  • 1,526 篇 会议
  • 50 册 图书
  • 18 篇 期刊文献

馆藏范围

  • 1,594 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,239 篇 工学
    • 828 篇 计算机科学与技术...
    • 550 篇 软件工程
    • 237 篇 光学工程
    • 234 篇 电气工程
    • 223 篇 信息与通信工程
    • 142 篇 测绘科学与技术
    • 99 篇 电子科学与技术(可...
    • 82 篇 生物医学工程(可授...
    • 72 篇 生物工程
    • 63 篇 控制科学与工程
    • 60 篇 仪器科学与技术
    • 55 篇 化学工程与技术
    • 50 篇 机械工程
    • 45 篇 建筑学
    • 45 篇 土木工程
    • 41 篇 材料科学与工程(可...
    • 26 篇 航空宇航科学与技...
    • 24 篇 交通运输工程
  • 989 篇 理学
    • 634 篇 物理学
    • 347 篇 数学
    • 90 篇 统计学(可授理学、...
    • 83 篇 生物学
    • 53 篇 化学
    • 39 篇 系统科学
  • 332 篇 医学
    • 309 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
    • 20 篇 特种医学
  • 155 篇 管理学
    • 114 篇 图书情报与档案管...
    • 49 篇 管理科学与工程(可...
  • 18 篇 农学
  • 15 篇 法学
  • 14 篇 军事学
  • 4 篇 经济学
  • 3 篇 教育学
  • 2 篇 文学
  • 2 篇 艺术学

主题

  • 136 篇 image processing
  • 135 篇 pattern recognit...
  • 96 篇 image segmentati...
  • 51 篇 feature extracti...
  • 47 篇 image fusion
  • 46 篇 image enhancemen...
  • 37 篇 image analysis
  • 35 篇 image processing...
  • 34 篇 image coding
  • 32 篇 artificial intel...
  • 29 篇 face recognition
  • 29 篇 image recognitio...
  • 27 篇 deep learning
  • 26 篇 image registrati...
  • 24 篇 neural networks
  • 24 篇 image reconstruc...
  • 23 篇 image compressio...
  • 20 篇 computer vision
  • 19 篇 support vector m...
  • 18 篇 object detection

机构

  • 24 篇 institute for pa...
  • 15 篇 wuhan inst techn...
  • 15 篇 wuhan inst techn...
  • 14 篇 huazhong univ sc...
  • 14 篇 center for image...
  • 13 篇 huazhong univ sc...
  • 13 篇 school of artifi...
  • 12 篇 national key lab...
  • 10 篇 wuhan inst techn...
  • 10 篇 xidian univ inst...
  • 9 篇 international in...
  • 9 篇 hubei key labora...
  • 9 篇 hubei engineerin...
  • 9 篇 wuhan inst techn...
  • 9 篇 huazhong univ sc...
  • 8 篇 school of electr...
  • 8 篇 key laboratory o...
  • 7 篇 huazhong univ sc...
  • 7 篇 state key lab. o...
  • 7 篇 state key labora...

作者

  • 43 篇 jiao licheng
  • 34 篇 zhang tianxu
  • 28 篇 hong hanyu
  • 26 篇 tian jinwen
  • 22 篇 sang nong
  • 19 篇 ding mingyue
  • 17 篇 zhang xinyu
  • 15 篇 zhang xiuhua
  • 14 篇 cao zhiguo
  • 12 篇 cai chao
  • 12 篇 liu jianguo
  • 11 篇 shi yu
  • 10 篇 huang zhenghua
  • 10 篇 hua xia
  • 9 篇 chen zhong
  • 9 篇 wang yuehuan
  • 9 篇 zhou chengping
  • 9 篇 jiang hong
  • 8 篇 tan yihua
  • 8 篇 liu ying

语言

  • 1,585 篇 英文
  • 7 篇 其他
  • 2 篇 中文
检索条件"任意字段=5th International Symposium on Multispectral Image Processing and Pattern Recognition"
1594 条 记 录,以下是21-30 订阅
排序:
Precise tracking algorithm for small target based on event supervision
Precise tracking algorithm for small target based on event s...
收藏 引用
5th international symposium on multispectral image processing and pattern recognition
作者: Li, Yun Zhang, Tianxu Huazhong Univ Sci & Technol State Key Lab Multispectral Informat Proc Technol Inst Pattern Recognit & Artificial Intelligence Wuhan 430074 Peoples R China
A precise tracking algorithm for small target based on event supervision is introduced in this paper. the target chains and object aggregation are established firstly, Tri-level scan filter contains grey intension fil... 详细信息
来源: 评论
Improved algorithm for image decomposition based on bidimensional emd
Improved algorithm for image decomposition based on bidimens...
收藏 引用
5th international symposium on multispectral image processing and pattern recognition
作者: He, Jingbo Peng, Fuyuan Huazhong Univ Sci & Technol Inst Elect & Informat Engn Wuhan 430074 Peoples R China
According to the system intrinsic quality of self-comparability and the empirical mode decomposition algorithm of completeness and stability, an improvement algorithm for EMD image decomposition is presented. It is in... 详细信息
来源: 评论
Aerial sequence image mosaic using reduced sift descriptors
Aerial sequence image mosaic using reduced sift descriptors
收藏 引用
5th international symposium on multispectral image processing and pattern recognition
作者: Tuo, Hongya Jing, Zhongliang Zhang, Tinghou Shanghai Jiao Tong Univ Inst Aerosp Sci & Technol Shanghai 200030 Peoples R China
Sequence image mosaic is an important and effective method to build a large "panoramic" scene which includes two main steps: image registration and intensity blending. In this paper, SIFT feature points are ... 详细信息
来源: 评论
Multi-focus image fusion using adaptive Wiener filter
Multi-focus image fusion using adaptive Wiener filter
收藏 引用
5th international symposium on multispectral image processing and pattern recognition
作者: Hu, Junhong Zhang, Tianxu Zhong, Sheng Chen, Xujun Huazhong Normal Univ Elect & Informat Engn Dept Wuhan Peoples R China Huazhong Univ Sci & Technol Inst Pattern Recognit & AI Wuhan Peoples R China
this paper presents a new method for multi-focus image fusion. In the method, the source images are first decomposed into blocks, and the decomposed images are then combined by the use of adaptive Wiener filter. Effec... 详细信息
来源: 评论
Combining color and texture features for image retrieval
Combining color and texture features for image retrieval
收藏 引用
5th international symposium on multispectral image processing and pattern recognition
作者: Wang, Guiting Tian, Baobao Jiao, Licheng Xidian Univ Inst Intelligent Informat Proc Xian 710071 Peoples R China
In this paper, a new method named BQCGW (block-based method of combining quantized colors and Gabor wavelet features) is proposed for image retrieval. HSV color space, in which measured color differences are proportio... 详细信息
来源: 评论
image denoising based on local adaptive multi-scale wavelet least squares support vector regression(MWLS_SVR)
Image denoising based on local adaptive multi-scale wavelet ...
收藏 引用
5th international symposium on multispectral image processing and pattern recognition
作者: Wu, Dingxue Peng, Daiqiang Tian, Jinwen Huazhong Univ Sci & Technol Inst Pattern Recognit & Artificial Intelligence Wuhan 430074 Hubei Peoples R China
Rather than attempting to separate signal from noise in the spatial domain, it is often advantageous to work in a transform domain. Building on previous work, a novel denoising method based on local adaptive multi-sca... 详细信息
来源: 评论
New model of region extraction based on salient region detection and scale-space primal sketch
New model of region extraction based on salient region detec...
收藏 引用
5th international symposium on multispectral image processing and pattern recognition
作者: Xiao, Jie Ding, Mingyue Cai, Chao Zhou, Chengping Huazhong Univ Sci & Technol State Key Lab Multispectral Informat Proc Technol Inst Pattern Recognit & Artificial Intelligence Wuhan 430074 Peoples R China
this paper developed a new model of region extraction based on salient region detection and scale-space primal sketch. In the proposed model, we extract the region of interest (ROI) in two steps. Firstly, we estimate ... 详细信息
来源: 评论
Bayesian network software system development and application demonstration in remote sensing data processing - BayesNetEX
Bayesian network software system development and application...
收藏 引用
5th international symposium on multispectral image processing and pattern recognition
作者: Wen, Qi Ma, Jianwen Chinese Acad Sci Inst Remote Sensing Applicat Beijing 100101 Peoples R China
Since 1986 Bayesian Network has been a hot study topic in artificial intelligence field. We have researched Bayesian Network and related algorithms in remote sensing data processing for five years. Recently we finishe... 详细信息
来源: 评论
Algorithm of optical remote sensing image registration based on strong edge region
Algorithm of optical remote sensing image registration based...
收藏 引用
5th international symposium on multispectral image processing and pattern recognition
作者: Yao, Ting Yin, Dong Liu, Yuan Univ Sci & Technol China Dept Elect Eng & Informat Sci Hefei 230027 Anhui Peoples R China
Aiming at the registration of optical remote sensing images, an algorithm based on strong edge region is proposed. First, the strong edge regions are extracted. then combines with the regions' moment invariants an... 详细信息
来源: 评论
Robust L1 PCA and application in image denoising
Robust L1 PCA and application in image denoising
收藏 引用
5th international symposium on multispectral image processing and pattern recognition
作者: Gao, Junbin Kwan, Paul W. H. Guo, Yi Charles Sturt Univ Sch Comp Sci Bathurst NSW 2795 Australia Univ New England Sch Sci & Technol Armidale NSW 2351 Australia
the so-called robust L1 PCA was introduced in our recent work [1] based on the L1 noise assumption. Due to the heavy tail characteristics of the L1 distribution, the proposed model has been proved much more robust aga... 详细信息
来源: 评论