咨询与建议

限定检索结果

文献类型

  • 164 篇 会议
  • 16 篇 期刊文献
  • 14 册 图书

馆藏范围

  • 194 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 118 篇 工学
    • 110 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 25 篇 电气工程
    • 15 篇 信息与通信工程
    • 9 篇 控制科学与工程
    • 9 篇 生物工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 仪器科学与技术
    • 4 篇 机械工程
    • 4 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 1 篇 冶金工程
    • 1 篇 纺织科学与工程
  • 60 篇 理学
    • 43 篇 数学
    • 17 篇 物理学
    • 10 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 2 篇 化学
    • 2 篇 系统科学
  • 22 篇 医学
    • 21 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 11 篇 管理学
    • 10 篇 图书情报与档案管...
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 艺术学

主题

  • 54 篇 pattern recognit...
  • 10 篇 pattern matching
  • 7 篇 image segmentati...
  • 7 篇 graph theory
  • 6 篇 computer graphic...
  • 6 篇 discrete mathema...
  • 6 篇 artificial intel...
  • 6 篇 image processing...
  • 4 篇 machine learning
  • 4 篇 data structures
  • 4 篇 computer imaging...
  • 3 篇 deep learning
  • 3 篇 computational ef...
  • 3 篇 graphic methods
  • 3 篇 pattern recognit...
  • 3 篇 semantics
  • 3 篇 image processing
  • 3 篇 algorithm analys...
  • 2 篇 possibilistic cl...
  • 2 篇 computer science

机构

  • 3 篇 vienna universit...
  • 2 篇 univ appl sci & ...
  • 2 篇 medical universi...
  • 2 篇 univ bern inst c...
  • 2 篇 school of comput...
  • 2 篇 osaka univ osaka
  • 2 篇 aichi institute ...
  • 2 篇 university of to...
  • 2 篇 ensicaen cnrs um...
  • 2 篇 human language t...
  • 2 篇 vienna universit...
  • 2 篇 cnr infm lamia i...
  • 2 篇 univ lausanne ip...
  • 2 篇 department of co...
  • 2 篇 univ pisa dipart...
  • 2 篇 pattern recognit...
  • 1 篇 centre for patte...
  • 1 篇 cnrs umr 6072 im...
  • 1 篇 nanyang technolo...
  • 1 篇 computer science...

作者

  • 18 篇 kropatsch walter...
  • 9 篇 haxhimusa yll
  • 7 篇 bunke horst
  • 6 篇 riesen kaspar
  • 5 篇 ion adrian
  • 4 篇 hancock edwin r.
  • 4 篇 brun luc
  • 3 篇 jiang xiaoyi
  • 3 篇 yachida m
  • 3 篇 de sousa samuel
  • 3 篇 fischer andreas
  • 3 篇 vento mario
  • 3 篇 pasquale foggia
  • 3 篇 mario vento
  • 2 篇 foggia pasquale
  • 2 篇 masulli f
  • 2 篇 schnörr c
  • 2 篇 massone am
  • 2 篇 stauffer michael
  • 2 篇 bunke h

语言

  • 192 篇 英文
  • 2 篇 中文
检索条件"任意字段=5th International Workshop on Graph-Based Representations in Pattern Recognition"
194 条 记 录,以下是1-10 订阅
排序:
13th IAPR-TC-15 international workshop on graph-based representations in pattern recognition, GbRPR 2023
13th IAPR-TC-15 International Workshop on Graph-Based Repres...
收藏 引用
13th IAPR-TC-15 international workshop on graph-based representations in pattern recognition, GbRPR 2023
the proceedings contain 16 papers. the special focus in this conference is on . the topics include: Maximal Independent Sets for Pooling in graph Neural Networks;detecting Abnormal Communication patterns in&...
来源: 评论
ABDPool: Attention-based Differentiable Pooling  26
ABDPool: Attention-based Differentiable Pooling
收藏 引用
26th international Conference on pattern recognition / 8th international workshop on Image Mining - theory and Applications (IMTA)
作者: Liu, Yue Cui, Lixin Wang, Yue Bai, Lu Cent Univ Finance & Econ 39 South Coll Rd Beijing Peoples R China
graph Neural Networks (GNNs) have achieved state-of-the-art performance on a wide range of graph-based tasks such as graph classification and node classification. this is because the unique structure of GNNs allows th... 详细信息
来源: 评论
PatentSemTech 2024 - Proceedings of the 5th workshop on Patent Text Mining and Semantic Technologies, co-located with the 47th international ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024
PatentSemTech 2024 - Proceedings of the 5th Workshop on Pate...
收藏 引用
5th workshop on Patent Text Mining and Semantic Technologies, PatentSemTech 2024
the proceedings contain 10 papers. the topics discussed include: multi-task classification model for muitilingual patents;improving patent classification using AI-generated summaries;semi-supervised learning methods f...
来源: 评论
Leveraging Knowledge graph Embeddings to Enhance Contextual representations for Relation Extraction  17th
Leveraging Knowledge Graph Embeddings to Enhance Contextual ...
收藏 引用
17th international Conference on Document Analysis and recognition workshop (ICDAR)
作者: Laleye, Frejus A. A. Rakotoson, Loic Massip, Sylvain Opscidia Paris France
Relation extraction task is a crucial and challenging aspect of Natural Language Processing. Several methods have surfaced as of late, exhibiting notable performance in addressing the task;however, most of these appro... 详细信息
来源: 评论
Not Everybody Speaks RDF: Knowledge Conversion between Different Data representations  5
Not Everybody Speaks RDF: Knowledge Conversion between Diffe...
收藏 引用
5th international workshop on Knowledge graph Construction, KGCW 2024
作者: Scrocca, Mario Carenini, Alessio Grassi, Marco Comerio, Marco Celino, Irene Cefriel Politecnico di Milano Milan Italy
Knowledge representation in RDF guarantees shared semantics and enables interoperability in data exchanges. Various approaches have been proposed for RDF knowledge graph construction, with declarative mapping language... 详细信息
来源: 评论
Multi-speaker Emotional Speech Synthesis based on Self-Supervised Speech representations  5
Multi-speaker Emotional Speech Synthesis Based on Self-Super...
收藏 引用
5th IEEE international Conference on pattern recognition and Machine Learning, PRML 2024
作者: Yin, Mingming Huang, Zhihua Lu, Kexin Zhou, Haiyang School of Computer Science and Technology Xinjiang University Urumqi China School of Computer Science and Technology Xinjiang University Key Laboratory of Signal Detection and Processing Urumqi China
In recent years, emotional speech synthesis has shown considerable progress. However, some existing emotional speech synthesis methods only model emotion from a single scale, resulting in only global or average emotio... 详细信息
来源: 评论
Data-driven Latent graph Structure Learning for Diagnosis of Alzheimer's Syndrome  26
Data-driven Latent Graph Structure Learning for Diagnosis of...
收藏 引用
26th international Conference on pattern recognition / 8th international workshop on Image Mining - theory and Applications (IMTA)
作者: Wang, Jianjia Wu, Chong Shanghai Univ Shanghai Inst Adv Commun & Data Sci Sch Comp Engn & Sci Shanghai Peoples R China Shanghai Univ Sch Comp Engn & Sci Shanghai 200444 Peoples R China
Complex systems often have a latent graph structure. Studying the underlying graph structure will help us to analyze the mechanisms of complex phenomena. However, it is a challenging problem to learn effective graph s... 详细信息
来源: 评论
Efficient Dense-graph Convolutional Network with Inductive Prior Augmentations for Unsupervised Micro-Gesture recognition  26
Efficient Dense-Graph Convolutional Network with Inductive P...
收藏 引用
26th international Conference on pattern recognition / 8th international workshop on Image Mining - theory and Applications (IMTA)
作者: Shah, Atif Chen, Haoyu Shi, Henglin Zhao, Guoying Univ Oulu Ctr Machine Vis & Signal Anal CMVS Oulu Finland
Skeleton-based action/gesture recognition has already witnessed excellent progress on processing large-scale, laboratory-based datasets with pre-defined skeleton joint topology. However, it's still an unsolved tas... 详细信息
来源: 评论
STIT: Spatio-Temporal Interaction Transformers for Human-Object Interaction recognition in Videos  26
STIT: Spatio-Temporal Interaction Transformers for Human-Obj...
收藏 引用
26th international Conference on pattern recognition / 8th international workshop on Image Mining - theory and Applications (IMTA)
作者: Almushyti, Muna Li, Frederick W. B. Univ Durham Dept Comp Sci Durham England Qassim Univ Educ Serv Buraydah Saudi Arabia
Recognizing human-object interactions is challenging due to their spatio-temporal changes. We propose the Spatio-Temporal Interaction Transformer-based (STIT) network to reason such changes. Specifically, spatial tran... 详细信息
来源: 评论
Quadratic Kernel Learning for Interpolation Kernel Machine based graph Classification  13th
Quadratic Kernel Learning for Interpolation Kernel Machine ...
收藏 引用
13th IAPR-TC-15 international workshop on graph-based representations in pattern recognition, GbRPR 2023
作者: Zhang, Jiaqi Liu, Cheng-Lin Jiang, Xiaoyi Faculty of Mathematics and Computer Science University of Münster Einsteinstrasse 62 Münster48149 Germany National Laboratory of Pattern Recognition Institute of Automation of Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing10049 China
Interpolating classifiers interpolate all the training data and thus have zero training error. Recent research shows their fundamental importance for high-performance ensemble techniques. Interpolation kernel machines... 详细信息
来源: 评论