咨询与建议

限定检索结果

文献类型

  • 529 篇 会议
  • 17 篇 期刊文献

馆藏范围

  • 546 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 417 篇 工学
    • 297 篇 计算机科学与技术...
    • 274 篇 控制科学与工程
    • 116 篇 软件工程
    • 66 篇 电气工程
    • 45 篇 机械工程
    • 24 篇 交通运输工程
    • 22 篇 信息与通信工程
    • 21 篇 生物工程
    • 12 篇 力学(可授工学、理...
    • 12 篇 化学工程与技术
    • 11 篇 生物医学工程(可授...
    • 10 篇 安全科学与工程
    • 8 篇 航空宇航科学与技...
    • 7 篇 材料科学与工程(可...
    • 7 篇 动力工程及工程热...
    • 7 篇 土木工程
  • 100 篇 理学
    • 59 篇 数学
    • 35 篇 系统科学
    • 25 篇 生物学
    • 19 篇 统计学(可授理学、...
    • 13 篇 物理学
    • 10 篇 化学
  • 75 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 16 篇 工商管理
    • 12 篇 图书情报与档案管...
  • 17 篇 教育学
    • 17 篇 教育学
  • 12 篇 医学
    • 8 篇 基础医学(可授医学...
    • 6 篇 临床医学
  • 9 篇 文学
    • 9 篇 外国语言文学
  • 8 篇 法学
    • 8 篇 社会学
  • 4 篇 经济学
  • 1 篇 农学

主题

  • 61 篇 reinforcement le...
  • 22 篇 machine learning
  • 19 篇 vehicle dynamics
  • 18 篇 control systems
  • 16 篇 deep learning
  • 16 篇 neural networks
  • 16 篇 heuristic algori...
  • 13 篇 optimal control
  • 13 篇 adaptation model...
  • 11 篇 model predictive...
  • 10 篇 stability analys...
  • 10 篇 decision making
  • 10 篇 deep reinforceme...
  • 10 篇 training
  • 9 篇 predictive model...
  • 9 篇 real-time system...
  • 9 篇 mathematical mod...
  • 9 篇 dynamics
  • 9 篇 data models
  • 9 篇 quality control

机构

  • 5 篇 univ oxford dept...
  • 5 篇 carnegie mellon ...
  • 4 篇 carnegie mellon ...
  • 3 篇 univ sheffield d...
  • 3 篇 indian inst tech...
  • 3 篇 univ washington ...
  • 3 篇 univ calif berke...
  • 2 篇 stevens inst tec...
  • 2 篇 nit jamshedpur j...
  • 2 篇 centers for dise...
  • 2 篇 hong kong univ s...
  • 2 篇 school of transp...
  • 2 篇 xuhai college ch...
  • 2 篇 rhein westfal th...
  • 2 篇 univ chinese aca...
  • 2 篇 univ michigan de...
  • 2 篇 chinese univ hon...
  • 2 篇 school of inform...
  • 2 篇 school of inform...
  • 2 篇 school of mathem...

作者

  • 5 篇 trimpe sebastian
  • 3 篇 kumar shashi ran...
  • 3 篇 drummond ross
  • 3 篇 rubaai ahmed
  • 3 篇 abate alessandro
  • 2 篇 roussias l.
  • 2 篇 qu guannan
  • 2 篇 cannon mark
  • 2 篇 tahir fadhil r.
  • 2 篇 roberts p.d.
  • 2 篇 beraha d.
  • 2 篇 tilki umut
  • 2 篇 mao weichao
  • 2 篇 limbert david e.
  • 2 篇 yang heng
  • 2 篇 liu yang
  • 2 篇 jutan a.
  • 2 篇 xu jie
  • 2 篇 hsieh m. ani
  • 2 篇 yang yang

语言

  • 529 篇 英文
  • 17 篇 其他
检索条件"任意字段=6th Annual Learning for Dynamics and Control Conference"
546 条 记 录,以下是81-90 订阅
排序:
Neural Operators for Boundary Stabilization of Stop-and-Go Traffic  6
Neural Operators for Boundary Stabilization of Stop-and-Go T...
收藏 引用
6th annual learning for dynamics and control conference
作者: Zhang, Yihuai Zhong, Ruiguo Yu, Huan Hong Kong Univ Sci & Technol Thrust Intelligent Transportat Guangzhou Peoples R China Hong Kong Univ Sci & Technol Dept Civil & Environm Engn Guangzhou Peoples R China
this paper introduces a novel approach to PDE boundary control design using neural operators to alleviate stop-and-go traffic instabilities. Our framework leverages neural operators to design control strategies for tr... 详细信息
来源: 评论
Soft Convex Quantization: Revisiting Vector Quantization with Convex Optimization  6
Soft Convex Quantization: Revisiting Vector Quantization wit...
收藏 引用
6th annual learning for dynamics and control conference
作者: Gautam, Tanmay Pryzant, Reid Yang, Ziyi Zhu, Chenguang Sojoudi, Somayeh Microsoft Azure AI Redmond WA 98052 USA Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94720 USA
Vector Quantization (VQ) is a well-known technique in deep learning for extracting informative discrete latent representations. VQ-embedded models have shown impressive results in a range of applications including ima... 详细信息
来源: 评论
Signatures Meet Dynamic Programming: Generalizing Bellman Equations for Trajectory Following  6
Signatures Meet Dynamic Programming: Generalizing Bellman Eq...
收藏 引用
6th annual learning for dynamics and control conference
作者: Ohnishi, Motoya Akinola, Iretiayo Xu, Jie Mandlekar, Ajay Ramos, Fabio Univ Washington Seattle WA 98195 USA NVIDIA Santa Clara CA USA Univ Sydney Sydney NSW Australia
Path signatures have been proposed as a powerful representation of paths that efficiently captures the path's analytic and geometric characteristics, having useful algebraic properties including fast concatenation... 详细信息
来源: 评论
Adaptive neural network based control approach for building energy control under changing environmental conditions  6
Adaptive neural network based control approach for building ...
收藏 引用
6th annual learning for dynamics and control conference
作者: Frison, Lilli Goelzhaeuser, Simon Fraunhofer Inst Solar Energy Syst ISE Heidenhofstr 2 D-79110 Freiburg Germany IMTEK Dept Microsyst Engn Syst Control & Optimizat Lab Georges Koehler Allee 102 D-79110 Freiburg Germany
Deep neural networks are adept at modeling complex relationships between input and output variables. When trained on diverse datasets, they can understand not just the specifics of individual objects but also the broa... 详细信息
来源: 评论
Parameter-Adaptive Approximate MPC: Tuning Neural-Network controllers without Retraining  6
Parameter-Adaptive Approximate MPC: Tuning Neural-Network Co...
收藏 引用
6th annual learning for dynamics and control conference
作者: Hose, Henrik Graefe, Alexander Trimpe, Sebastian Rhein Westfal TH Aachen Inst Data Sci Mech Engn DSME Aachen Germany
Model Predictive control (MPC) is a method to control nonlinear systems with guaranteed stability and constraint satisfaction but suffers from high computation times. Approximate MPC (AMPC) with neural networks (NNs) ... 详细信息
来源: 评论
Generalized Constraint for Probabilistic Safe Reinforcement learning  6
Generalized Constraint for Probabilistic Safe Reinforcement ...
收藏 引用
6th annual learning for dynamics and control conference
作者: Chen, Weiqin Paternain, Santiago Rensselaer Polytech Inst Dept Elect Comp & Syst Engn Troy NY 12180 USA
In this paper, we consider the problem of learning policies for probabilistic safe reinforcement learning (PSRL). Specifically, a safe policy or controller is one that, with high probability, maintains the trajectory ... 详细信息
来源: 评论
Probably approximately correct stability of allocations in uncertain coalitional games with private sampling  6
Probably approximately correct stability of allocations in u...
收藏 引用
6th annual learning for dynamics and control conference
作者: Pantazis, George Fele, Filiberto Fabiani, Filippo Grammatico, Sergio Margellos, Kostas Delft Univ Technol Delft Ctr Syst & Control Delft Netherlands Univ Seville Dept Syst Engn & Automat Seville Spain IMT Sch Adv Studies Lucca Lucca Italy Univ Oxford Dept Engn Sci Oxford England
We study coalitional games with exogenous uncertainty in the coalition value, in which each agent is allowed to have private samples of the uncertainty. As a consequence, the agents may have a different perception of ... 详细信息
来源: 评论
Towards Model-Free LQR control over Rate-Limited Channels  6
Towards Model-Free LQR Control over Rate-Limited Channels
收藏 引用
6th annual learning for dynamics and control conference
作者: Mitra, Aritra Ye, Lintao Gupta, Vijay North Carolina State Univ Dept Elect & Comp Engn Raleigh NC 27695 USA Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Wuhan Peoples R China Purdue Univ Elmore Family Sch Elect & Comp Engn W Lafayette IN 47907 USA
Given the success of model-free methods for control design in many problem settings, it is natural to ask how things will change if realistic communication channels are utilized for the transmission of gradients or po... 详细信息
来源: 评论
Gradient Shaping for Multi-Constraint Safe Reinforcement learning  6
Gradient Shaping for Multi-Constraint Safe Reinforcement Lea...
收藏 引用
6th annual learning for dynamics and control conference
作者: Yao, Yihang Liu, Zuxin Cen, Zhepeng Huang, Peide Zhang, Tingnan Yu, Wenhao Zhao, Ding Carnegie Mellon Univ Pittsburgh PA 15213 USA Google Deepmind London England
Online safe reinforcement learning (RL) involves training a policy that maximizes task efficiency while satisfying constraints via interacting with the environments. In this paper, our focus lies in addressing the com... 详细信息
来源: 评论
Global Rewards in Multi-Agent Deep Reinforcement learning for Autonomous Mobility on Demand Systems  6
Global Rewards in Multi-Agent Deep Reinforcement Learning fo...
收藏 引用
6th annual learning for dynamics and control conference
作者: Hoppe, Heiko Enders, Tobias Cappart, Quentin Schiffer, Maximilian Tech Univ Munich Munich Germany Polytech Montreal Montreal PQ Canada
We study vehicle dispatching in autonomous mobility on demand (AMoD) systems, where a central operator assigns vehicles to customer requests or rejects these with the aim of maximizing its total profit. Recent approac... 详细信息
来源: 评论