咨询与建议

限定检索结果

文献类型

  • 1,851 篇 会议
  • 124 册 图书
  • 40 篇 期刊文献

馆藏范围

  • 2,015 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,517 篇 工学
    • 1,317 篇 计算机科学与技术...
    • 750 篇 软件工程
    • 430 篇 电气工程
    • 252 篇 信息与通信工程
    • 251 篇 光学工程
    • 195 篇 生物工程
    • 118 篇 生物医学工程(可授...
    • 117 篇 控制科学与工程
    • 95 篇 电子科学与技术(可...
    • 87 篇 机械工程
    • 68 篇 化学工程与技术
    • 59 篇 安全科学与工程
    • 37 篇 仪器科学与技术
    • 37 篇 交通运输工程
    • 34 篇 材料科学与工程(可...
    • 22 篇 建筑学
    • 18 篇 农业工程
  • 620 篇 理学
    • 324 篇 物理学
    • 232 篇 数学
    • 209 篇 生物学
    • 71 篇 化学
    • 62 篇 统计学(可授理学、...
    • 28 篇 系统科学
  • 345 篇 医学
    • 333 篇 临床医学
    • 61 篇 基础医学(可授医学...
    • 48 篇 药学(可授医学、理...
  • 174 篇 管理学
    • 121 篇 图书情报与档案管...
    • 66 篇 管理科学与工程(可...
  • 24 篇 农学
    • 22 篇 作物学
  • 23 篇 法学
    • 21 篇 社会学
  • 12 篇 教育学
  • 8 篇 经济学
  • 5 篇 军事学
  • 2 篇 文学

主题

  • 232 篇 computer vision
  • 101 篇 image processing
  • 92 篇 deep learning
  • 89 篇 artificial intel...
  • 84 篇 image processing...
  • 73 篇 image segmentati...
  • 72 篇 computer graphic...
  • 68 篇 feature extracti...
  • 63 篇 pattern recognit...
  • 43 篇 machine learning
  • 41 篇 object detection
  • 41 篇 convolutional ne...
  • 37 篇 computational mo...
  • 37 篇 computer imaging...
  • 36 篇 image enhancemen...
  • 34 篇 image reconstruc...
  • 32 篇 graphics process...
  • 32 篇 image classifica...
  • 31 篇 face recognition
  • 31 篇 visualization

机构

  • 19 篇 indian statistic...
  • 15 篇 indian institute...
  • 12 篇 indian inst tech...
  • 9 篇 indian institute...
  • 9 篇 indian institute...
  • 9 篇 indian inst tech...
  • 8 篇 indian institute...
  • 8 篇 indian institute...
  • 8 篇 indian inst tech...
  • 8 篇 indian institute...
  • 7 篇 indian stat inst...
  • 7 篇 indian inst tech...
  • 7 篇 indian inst tech...
  • 7 篇 indian inst tech...
  • 7 篇 indian inst tech...
  • 7 篇 indian inst sci ...
  • 6 篇 iit kharagpur kh...
  • 6 篇 indian inst tech...
  • 6 篇 faculty of elect...
  • 6 篇 department of co...

作者

  • 31 篇 chaudhury santan...
  • 25 篇 mukherjee jayant...
  • 25 篇 chaudhuri subhas...
  • 21 篇 das sukhendu
  • 16 篇 lall brejesh
  • 15 篇 babu r. venkates...
  • 15 篇 raman shanmugana...
  • 13 篇 das partha prati...
  • 13 篇 mukherjee dipti ...
  • 13 篇 harit gaurav
  • 13 篇 mishra deepak
  • 11 篇 chanda bhabatosh
  • 11 篇 mukherjee snehas...
  • 10 篇 biswas soma
  • 10 篇 raman balasubram...
  • 10 篇 jawahar c.v.
  • 10 篇 biswas prabir ku...
  • 10 篇 sur arijit
  • 9 篇 banerjee biplab
  • 9 篇 balasubramanian ...

语言

  • 1,974 篇 英文
  • 37 篇 其他
  • 6 篇 中文
  • 2 篇 俄文
检索条件"任意字段=6th Indian Conference on Computer Vision, Graphics and Image Processing"
2015 条 记 录,以下是891-900 订阅
排序:
Deep neural network for foreground object segmentation: An unsupervised approach  6th
Deep neural network for foreground object segmentation: An u...
收藏 引用
6th National conference on computer vision, Pattern Recognition, image processing and graphics, NCVPRIPG 2017
作者: Majumder, Avishek Venkatesh Babu, R. Indian Institute of Science BangaloreKarnataka560012 India
Saliency plays a key role in various computer vision tasks. Extracting salient regions from images and videos have been a well established problem of computer vision. While segmenting salient objects from images depen... 详细信息
来源: 评论
Classification of indian monuments into architectural styles  6th
Classification of indian monuments into architectural styles
收藏 引用
6th National conference on computer vision, Pattern Recognition, image processing and graphics, NCVPRIPG 2017
作者: Sharma, Saurabh Aggarwal, Priyal Bhattacharyya, Akanksha N. Indu, S. Department of Computer Science and Engineering Delhi Technological University Delhi India Department of Electronics and Communication Engineering Delhi Technological University Delhi India
We propose two novel approaches to classify indian monuments according to their distinct architectural styles. While the historical significance of most indian monuments is well documented, the details of their archit... 详细信息
来源: 评论
image Co-segmentation using Graph Convolution Neural Network  11
Image Co-segmentation using Graph Convolution Neural Network
收藏 引用
11th indian conference on computer vision, graphics and image processing (ICVGIP)
作者: Banerjee, Sayan Hati, Avik Chaudhuri, Subhasis Velmurugan, Rajbabu Indian Inst Technol Mumbai Maharashtra India
image co-segmentation is jointly segmenting two or more images sharing common foreground objects. In this paper, we propose a novel graph convolution neural network (graph CNN) based end-to-end model for performing co... 详细信息
来源: 评论
A Neural Network Based Approach for Geo-Localizing Events in Crowd Sourced Videos  11
A Neural Network Based Approach for Geo-Localizing Events in...
收藏 引用
11th indian conference on computer vision, graphics and image processing (ICVGIP)
作者: More, Amit Chaudhuri, Subhasis Indian Inst Technol Mumbai Maharashtra India
Popular events are often video recorded simultaneously by a general crowd using smartphones. In the present work, we propose a robust recurrent neural network (RNN) based approach for geo-localizing these events using... 详细信息
来源: 评论
A Deep Learning-based Model for Phase Unwrapping  11
A Deep Learning-based Model for Phase Unwrapping
收藏 引用
11th indian conference on computer vision, graphics and image processing (ICVGIP)
作者: Spoorthi, G. E. Gorthi, Subrahmanyam Gorthi, Rama Krishna Sai Indian Inst Technol Tirupati Andhra Pradesh India
Phase unwrapping is an important problem in several applications that attempts to restore original phase from wrapped phase. In this paper, we propose a novel phase unwrapping model based on the deep convolutional neu... 详细信息
来源: 评论
Towards Automated Floorplan Generation  11
Towards Automated Floorplan Generation
收藏 引用
11th indian conference on computer vision, graphics and image processing (ICVGIP)
作者: Chelani, Kunal Sidhartha, Chitturi Govindu, Venu Madhav Indian Inst Sci Bengaluru India
In this paper, we propose a pipeline for generating a 2D floorplan using depth cameras. In our pipeline we use an existing approach to recovering the camera motion trajectories from the depth and RGB sequences. Given ... 详细信息
来源: 评论
Sparse Signal Recovery for Multiple Measurement Vectors with Temporally Correlated Entries: A Bayesian Perspective  11
Sparse Signal Recovery for Multiple Measurement Vectors with...
收藏 引用
11th indian conference on computer vision, graphics and image processing (ICVGIP)
作者: Sharma, Shruti Chaudhury, Santanu Jayadeva, Jayadeva Bhagat, Snigdha Indian Inst Technol Delhi New Delhi India
Bayesian Sparse Signal Recovery (SSR) for Multiple Measurement Vectors, when elements of each row of solution matrix are correlated, is addressed in the paper. We propose a standard linear Gaussian observation model a... 详细信息
来源: 评论
A method for detecting JPEG anti-forensics  6th
A method for detecting JPEG anti-forensics
收藏 引用
6th National conference on computer vision, Pattern Recognition, image processing and graphics, NCVPRIPG 2017
作者: Bhardwaj, Dinesh Kumawat, Chothmal Pankajakshan, Vinod Department of Electronics and Communication Engineering Indian Institute of Technology Roorkee RoorkeeUttarakhand India
In this paper, a new approach is proposed for the detection of JPEG anti-forensic operations. It is based on the fact that when a JPEG anti-forensic operation is applied, the values of DCT coefficients are changed. th... 详细信息
来源: 评论
On-Demand Augmentation of Contour Trees  11
On-Demand Augmentation of Contour Trees
收藏 引用
11th indian conference on computer vision, graphics and image processing (ICVGIP)
作者: Sharma, Mohit Natarajan, Vijay Indian Inst Sci Bangalore Karnataka India
the contour tree represents the topology of level sets of a scalar function. Nodes of the tree correspond to critical level sets and arcs of the tree represent a collection of topologically equivalent level sets conne... 详细信息
来源: 评论
LEDNet: Deep Network for Single image Haze Removal  11
LEDNet: Deep Network for Single Image Haze Removal
收藏 引用
11th indian conference on computer vision, graphics and image processing (ICVGIP)
作者: Dudhane, Akshay Murala, Subrahmanyam Dhall, Abhinav Indian Inst Technol Ropar Comp Vis & Pattern Recognit Lab Rupnagar India Indian Inst Technol Ropar Learning Affect & Semant Image Anal Grp Rupnagar India
Haze during the bad weather, degrades the visibility of the scene drastically. Degradation of scene visibility varies with respect to the transmission coefficient/map (T-c) of the scene. Estimation of accurate T-c is ... 详细信息
来源: 评论