咨询与建议

限定检索结果

文献类型

  • 88 篇 会议
  • 10 册 图书

馆藏范围

  • 98 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 79 篇 工学
    • 77 篇 计算机科学与技术...
    • 17 篇 软件工程
    • 6 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 3 篇 电气工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 光学工程
    • 2 篇 化学工程与技术
    • 2 篇 生物工程
    • 2 篇 安全科学与工程
    • 1 篇 机械工程
    • 1 篇 电子科学与技术(可...
  • 11 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 7 篇 理学
    • 5 篇 数学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 3 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...

主题

  • 20 篇 data mining
  • 12 篇 pattern recognit...
  • 10 篇 machine learning
  • 6 篇 artificial intel...
  • 5 篇 data mining and ...
  • 5 篇 feature selectio...
  • 4 篇 clustering
  • 4 篇 support vector m...
  • 4 篇 computer applica...
  • 2 篇 data warehouses
  • 2 篇 ensemble learnin...
  • 2 篇 symbolic learner
  • 2 篇 computer communi...
  • 2 篇 learning algorit...
  • 2 篇 database managem...
  • 2 篇 bagging
  • 2 篇 random subspace ...
  • 2 篇 mathematical log...
  • 2 篇 metadata
  • 2 篇 decision trees

机构

  • 2 篇 univ houston dep...
  • 2 篇 school of comput...
  • 1 篇 beijing univ sci...
  • 1 篇 univ politecn ca...
  • 1 篇 pontificia univ ...
  • 1 篇 technische unive...
  • 1 篇 penn state univ ...
  • 1 篇 chair of compute...
  • 1 篇 zhejiang univ co...
  • 1 篇 max planck insti...
  • 1 篇 chinese acad sci...
  • 1 篇 department of ma...
  • 1 篇 harbin inst tech...
  • 1 篇 univ porto fac c...
  • 1 篇 jawaharlal nehru...
  • 1 篇 indian statistic...
  • 1 篇 school of comput...
  • 1 篇 univ utrecht dep...
  • 1 篇 snecma safran gr...
  • 1 篇 machine learning...

作者

  • 2 篇 wu ou
  • 2 篇 abdelmalek amine
  • 2 篇 eick christoph f...
  • 2 篇 malek mouhoub
  • 2 篇 petra perner
  • 2 篇 luo guan
  • 2 篇 you qiang
  • 2 篇 bachir djebbar
  • 2 篇 changuel sahar
  • 2 篇 zhang yu
  • 2 篇 labroche nicolas
  • 2 篇 otmane ait moham...
  • 2 篇 hu weiming
  • 1 篇 shruti gupta
  • 1 篇 sujaudeen n
  • 1 篇 bradley andrew p...
  • 1 篇 lee wei-chung
  • 1 篇 tahir muhammad a...
  • 1 篇 joenssen dieter ...
  • 1 篇 fauser bart c. j...

语言

  • 94 篇 英文
  • 5 篇 中文
检索条件"任意字段=6th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2009"
98 条 记 录,以下是21-30 订阅
排序:
Semantic Aware Bayesian Network Model for Actionable Knowledge Discovery in Linked data  1
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Alharbi, Hasanein Saraee, Mohamad Univ Salford Salford M5 4WT Lancs England
the majority of the conventional mining algorithms treat the mining process as an isolated data-driven procedure and overlook the semantic of the targeted data. As a result, the generated patterns are abundant and end... 详细信息
来源: 评论
Metadata-Based Clustered Multi-task learning for thread mining in Web Communities  12th
Metadata-Based Clustered Multi-task Learning for Thread Mini...
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: You, Qiang Wu, Ou Luo, Guan Hu, Weiming Chinese Acad Sci CAS Ctr Excellence Brain Sci & Intelligence Techn Natl Lab Pattern Recognit Inst Automat Beijing 100190 Peoples R China
With user-generated content explosively growing, how to find valuable posts from discussion threads in web communities becomes a hot topic. Although many learning algorithms have been proposed for mining the thread co... 详细信息
来源: 评论
Rank Aggregation Algorithm Selection Meets Feature Selection  12th
Rank Aggregation Algorithm Selection Meets Feature Selection
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Zabashta, Alexey Smetannikov, Ivan Filchenkov, Andrey ITMO Univ Dept Comp Sci 49 Kronverksky Pr St Petersburg 197101 Russia
Rank aggregation is the important task in many areas, and different rank aggregation algorithms are created to find optimal rank. Nevertheless, none of these algorithms is the best for all cases. the main goal of this... 详细信息
来源: 评论
A New Strategy for Case-Based Reasoning Retrieval Using Classification Based on Association  12th
A New Strategy for Case-Based Reasoning Retrieval Using Clas...
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Aljuboori, Ahmed Meziane, Farid Parsons, David Univ Salford Sch Comp Sci & Engn Salford M5 4WT Lancs England
this paper proposes a novel strategy, Case-Based Reasoning Using Association Rules (CBRAR) to improve the performance of the Similarity base Retrieval SBR, classed frequent pattern trees FP-CAR algorithm, in order to ... 详细信息
来源: 评论
Feature Selection for Handling Concept Drift in the data Stream Classification  12th
Feature Selection for Handling Concept Drift in the Data Str...
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Turkov, Pavel Krasotkina, Olga Mottl, Vadim Sychugov, Alexey Tula State Univ 92 Lenin Ave Tula 300600 Russia Moscow MV Lomonosov State Univ Moscow 119991 Russia Russian Acad Sci Ctr Comp 40 Vavilov St Moscow 119333 Russia
With the advance in both hardware and software technologies, streaming data is ubiquitous today, and it is often a challenging task to store, analyze and visualize such rapid large volumes of data. One of difficult pr... 详细信息
来源: 评论
Driving Style Identification with Unsupervised learning  1
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Nikulin, Vladimir Vyatka State Univ Dept Math Methods Econ Kirov Russia
One way to optimise insurance prices and policies is to collect and to analyse driving trajectories: sequences of 2D-points, where time distance between any two consequitive points is a constant. Suppose that most of ... 详细信息
来源: 评论
Heuristic Model to Improve Feature Selection Based on machine learning in data mining  6
Heuristic Model to Improve Feature Selection Based on Machin...
收藏 引用
6th international conference on Cloud System and Big data Engineering (Confluence)
作者: Majumdar, Jahin Mal, Anwesha Gupta, Shruti Am Univ ASET Dept CSE Noida India
data mining and machine learning is one of the most popular research areas in computer science that is relevant in today's world of unfathomable data. To keep up with the rising size of data, there arises a need t... 详细信息
来源: 评论
Gossip-Based Behavioral Group Identification in Decentralized OSNs  12th
Gossip-Based Behavioral Group Identification in Decentralize...
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Laleh, Naeimeh Carminati, Barbara Ferrari, Elena Girdzijauskas, Sarunas Univ Insubria DiSTA Varese Italy Royal Inst Technol KTH Stockholm Sweden
DOSNs are distributed systems providing social networking services that become extremely popular in recent years. In DOSNs, the aim is to give the users control over their data and keeping data locally to enhance priv... 详细信息
来源: 评论
Feature Reduction for Multi Label Classification of Discrete data  12th
Feature Reduction for Multi Label Classification of Discrete...
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Devi, V. Susheela Akhand, Bhupesh Indian Inst Sci Dept Comp Sci & Automat Bangalore 560012 Karnataka India
We describe a novel multi-label classification algorithm which works for discrete data. A matrix which gives the membership value of each discrete value of each attribute for every class. For a test pattern, looking a... 详细信息
来源: 评论
Pruning a Random Forest by learning a learning Algorithm  12th
Pruning a Random Forest by Learning a Learning Algorithm
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Dheenadayalan, Kumar Srinivasaraghavan, G. Muralidhara, V. N. Int Inst Informat Technol Bangalore Karnataka India
Ensemble learning is a popular learning paradigm and finds its application in many diverse fields. Random Forest, a decision tree based ensemble learning algorithm has received constant attention in the research commu... 详细信息
来源: 评论