咨询与建议

限定检索结果

文献类型

  • 89 篇 会议
  • 10 册 图书

馆藏范围

  • 99 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 79 篇 工学
    • 77 篇 计算机科学与技术...
    • 17 篇 软件工程
    • 6 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 3 篇 电气工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 光学工程
    • 2 篇 化学工程与技术
    • 2 篇 生物工程
    • 2 篇 安全科学与工程
    • 1 篇 机械工程
    • 1 篇 电子科学与技术(可...
  • 12 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 7 篇 理学
    • 5 篇 数学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 3 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...

主题

  • 20 篇 data mining
  • 12 篇 pattern recognit...
  • 10 篇 machine learning
  • 6 篇 artificial intel...
  • 5 篇 data mining and ...
  • 5 篇 feature selectio...
  • 4 篇 clustering
  • 4 篇 support vector m...
  • 4 篇 computer applica...
  • 2 篇 data warehouses
  • 2 篇 ensemble learnin...
  • 2 篇 symbolic learner
  • 2 篇 computer communi...
  • 2 篇 learning algorit...
  • 2 篇 database managem...
  • 2 篇 bagging
  • 2 篇 random subspace ...
  • 2 篇 mathematical log...
  • 2 篇 metadata
  • 2 篇 decision trees

机构

  • 2 篇 univ houston dep...
  • 2 篇 school of comput...
  • 1 篇 beijing univ sci...
  • 1 篇 univ politecn ca...
  • 1 篇 pontificia univ ...
  • 1 篇 technische unive...
  • 1 篇 penn state univ ...
  • 1 篇 chair of compute...
  • 1 篇 zhejiang univ co...
  • 1 篇 max planck insti...
  • 1 篇 chinese acad sci...
  • 1 篇 department of ma...
  • 1 篇 harbin inst tech...
  • 1 篇 univ porto fac c...
  • 1 篇 jawaharlal nehru...
  • 1 篇 indian statistic...
  • 1 篇 school of comput...
  • 1 篇 univ utrecht dep...
  • 1 篇 snecma safran gr...
  • 1 篇 machine learning...

作者

  • 2 篇 wu ou
  • 2 篇 abdelmalek amine
  • 2 篇 eick christoph f...
  • 2 篇 malek mouhoub
  • 2 篇 petra perner
  • 2 篇 luo guan
  • 2 篇 you qiang
  • 2 篇 bachir djebbar
  • 2 篇 changuel sahar
  • 2 篇 zhang yu
  • 2 篇 labroche nicolas
  • 2 篇 otmane ait moham...
  • 2 篇 hu weiming
  • 1 篇 shruti gupta
  • 1 篇 sujaudeen n
  • 1 篇 bradley andrew p...
  • 1 篇 lee wei-chung
  • 1 篇 tahir muhammad a...
  • 1 篇 joenssen dieter ...
  • 1 篇 fauser bart c. j...

语言

  • 94 篇 英文
  • 5 篇 中文
  • 1 篇 其他
检索条件"任意字段=6th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2009"
99 条 记 录,以下是31-40 订阅
排序:
Pruning a Random Forest by learning a learning Algorithm  12th
Pruning a Random Forest by Learning a Learning Algorithm
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Dheenadayalan, Kumar Srinivasaraghavan, G. Muralidhara, V. N. Int Inst Informat Technol Bangalore Karnataka India
Ensemble learning is a popular learning paradigm and finds its application in many diverse fields. Random Forest, a decision tree based ensemble learning algorithm has received constant attention in the research commu... 详细信息
来源: 评论
Applying data mining to Healthcare: A Study of Social Network of Physicians and Patient Journeys  12th
Applying Data Mining to Healthcare: A Study of Social Networ...
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Kaushik, Shruti Choudhury, Abhinav Mallik, Kaustubh Moid, Anzer Dutt, Varun Indian Inst Technol Mandi Appl Cognit Sci Lab Mandi 175005 Himachal Prades India
In 2004, the US President launched an initiative to make healthcare medical records available electronically [27]. this initiative gives researchers an opportunity to study and mine healthcare data across hospitals, p... 详细信息
来源: 评论
Multiple Consensuses Clustering by Iterative Merging/Splitting of Clustering patterns  12th
Multiple Consensuses Clustering by Iterative Merging/Splitti...
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Al-najdi, Atheer Pasquier, Nicolas Precioso, Frederic Univ Nice Sophia Antipolis CNRS I3S UMR 7271 F-06900 Sophia Antipolis France
the existence of many clustering algorithms with variable performance on each dataset made the clustering task difficult. Consensus clustering tries to solve this problem by combining the partitions generated by diffe... 详细信息
来源: 评论
A learning Framework to Improve Unsupervised Gene Network Inference  1
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Turki, Turki Bassett, William Wang, Jason T. L. King Abdulaziz Univ Dept Comp Sci POB 80221 Jeddah 21589 Saudi Arabia New Jersey Inst Technol Bioinformat Program Newark NJ 07102 USA Dept Comp Sci Newark NJ 07102 USA
Network inference through link prediction is an important data mining problem that finds many applications in computational social science and biomedicine. For example, by predicting links, i.e., regulatory relationsh... 详细信息
来源: 评论
Statistical learning on Manifold-Valued data  12th
Statistical Learning on Manifold-Valued Data
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Kuleshov, Alexander Bernstein, Alexander Skolkovo Inst Sci & Technol Moscow Russia FRC CSC RAS Inst Syst Anal Moscow Russia Kharkevich Inst Informat Transmission Problems RA Moscow Russia
Regression on manifolds problem is to estimate an unknown smooth function f that maps p-dimensional manifold-valued inputs, whose values lie on unknown Input manifold M of lower dimensionality q < p embedded in an ... 详细信息
来源: 评论
On learning and Exploiting Time Domain Traffic patterns in Cellular Radio Access Networks  12th
On Learning and Exploiting Time Domain Traffic Patterns in C...
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Perez-Romero, Jordi Sanchez-Gonzalez, Juan Sallent, Oriol Agusti, Ramon Univ Politecn Cataluna Barcelona Spain
this paper presents a vision of how the different management procedures of future Fifth Generation (5G) wireless networks can be built upon the pillar of artificial intelligence concepts. After a general description o... 详细信息
来源: 评论
EFIM-Closed: Fast and Memory Efficient Discovery of Closed High-Utility Itemsets  1
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Fournier-Viger, Philippe Zida, Souleymane Lin, Jerry Chun-Wei Wu, Cheng-Wei Tseng, Vincent S. Harbin Inst Technol Shenzhen Grad Sch Sch Nat Sci & Humanities Shenzhen Peoples R China Univ Moncton Dept Comp Sci Moncton NB Canada Harbin Inst Technol Shenzhen Grad Sch Sch Comp Sci & Technol Shenzhen Peoples R China Natl Chiao Tung Univ Dept Comp Sci Hsinchu Taiwan
Discovering high-utility temsets in transaction databases is a popular data mining task. A limitation of traditional algorithms is that a huge amount of high-utility itemsets may be presented to the user. To provide a... 详细信息
来源: 评论
A Review on Artificial Intelligence Based Parameter Forecasting for Soil-Water Content  12th
A Review on Artificial Intelligence Based Parameter Forecast...
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Ozcep, Ferhat Yildirim, Eray Tezel, Okan Asci, Metin Karabulut, Savas Ozcep, Tazegul Istanbul Univ Dept Geophys Engn Istanbul Turkey Sakarya Univ Dept Geophys Engn Sakarya Turkey Kocaeli Univ Dept Geophys Engn Kocaeli Turkey Minist Natl Educ Sirinevler Mehmet Sen Okulu Istanbul Turkey
the purpose of this study, by using an artificial intelligent approaches, is to compare a correlation between geophysical and geotechnical parameters. the input variables for this system are the electrical resistivity... 详细信息
来源: 评论
IncMSTS-PP: An Algorithm to the Incremental Extraction of Significant Sequences from Environmental Sensor data  12th
IncMSTS-PP: An Algorithm to the Incremental Extraction of Si...
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: Silveira Junior, Carlos Roberto Ribeiro, Marcela Xavier Prado Santos, Marilde Terezinha Univ Fed Sao Carlos Washington Luis Km 235 Sao Carlos SP Brazil
the mining of sequential patterns from environmental sensor data is a challenging task. the data can present noises and contain sparse patterns hide in a huge amount of information. the knowledge extracted from enviro... 详细信息
来源: 评论
A Probabilistic Matrix Factorization Method for Link Sign Prediction in Social Networks  12th
A Probabilistic Matrix Factorization Method for Link Sign Pr...
收藏 引用
12th international conference on machine learning and data mining (mldm)
作者: You, Qiang Wu, Ou Luo, Guan Hu, Weiming Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat CAS Ctr Excellence Brain Sci & Intelligence Techn Beijing 100190 Peoples R China
In this paper, we consider the link sign prediction in social networks with friend and foe relationships. We view the sign prediction as a user-to-user recommendation problem with trust or distrust information. Not on... 详细信息
来源: 评论