咨询与建议

限定检索结果

文献类型

  • 2,626 篇 会议
  • 181 册 图书
  • 29 篇 期刊文献

馆藏范围

  • 2,835 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 1,885 篇 工学
    • 1,703 篇 计算机科学与技术...
    • 843 篇 软件工程
    • 323 篇 信息与通信工程
    • 274 篇 电气工程
    • 191 篇 生物工程
    • 170 篇 控制科学与工程
    • 154 篇 生物医学工程(可授...
    • 68 篇 安全科学与工程
    • 65 篇 光学工程
    • 64 篇 化学工程与技术
    • 57 篇 机械工程
    • 50 篇 交通运输工程
    • 45 篇 仪器科学与技术
    • 38 篇 电子科学与技术(可...
    • 33 篇 网络空间安全
  • 556 篇 理学
    • 295 篇 数学
    • 222 篇 生物学
    • 115 篇 统计学(可授理学、...
    • 105 篇 物理学
    • 80 篇 系统科学
    • 54 篇 化学
  • 405 篇 管理学
    • 270 篇 图书情报与档案管...
    • 188 篇 管理科学与工程(可...
    • 68 篇 工商管理
  • 262 篇 医学
    • 203 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 70 篇 药学(可授医学、理...
    • 35 篇 公共卫生与预防医...
  • 48 篇 法学
    • 43 篇 社会学
  • 41 篇 教育学
    • 37 篇 教育学
  • 30 篇 经济学
  • 26 篇 农学
  • 7 篇 文学
  • 5 篇 艺术学
  • 2 篇 军事学

主题

  • 485 篇 data mining
  • 485 篇 machine learning
  • 273 篇 pattern recognit...
  • 160 篇 feature extracti...
  • 155 篇 deep learning
  • 149 篇 artificial intel...
  • 112 篇 support vector m...
  • 106 篇 machine learning...
  • 95 篇 data mining and ...
  • 85 篇 training
  • 79 篇 data models
  • 75 篇 accuracy
  • 60 篇 computer imaging...
  • 56 篇 learning systems
  • 55 篇 neural networks
  • 48 篇 convolutional ne...
  • 47 篇 information syst...
  • 47 篇 computer applica...
  • 46 篇 predictive model...
  • 44 篇 big data

机构

  • 15 篇 national univers...
  • 15 篇 the islamic univ...
  • 15 篇 fujian provincia...
  • 13 篇 medical technica...
  • 13 篇 school of inform...
  • 13 篇 altoosi universi...
  • 11 篇 guangdong univer...
  • 10 篇 indian statistic...
  • 10 篇 school of manage...
  • 10 篇 department of bu...
  • 9 篇 institute of env...
  • 9 篇 department of to...
  • 8 篇 xi'an university...
  • 8 篇 al-zahraa univer...
  • 8 篇 college of mecha...
  • 8 篇 chinese academy ...
  • 7 篇 school of inform...
  • 7 篇 zhejiang univers...
  • 7 篇 institute of aut...
  • 7 篇 unsw sydney

作者

  • 17 篇 chang kuo-chi
  • 12 篇 de-shuang huang
  • 10 篇 chu kai-chun
  • 10 篇 mottl vadim
  • 9 篇 chang fu-hsiang
  • 9 篇 wang hsiao-chuan
  • 8 篇 zheng-guang wu
  • 8 篇 hongyi li
  • 8 篇 chaojie li
  • 8 篇 biao luo
  • 8 篇 petra perner
  • 8 篇 long cheng
  • 7 篇 yuhui shi
  • 7 篇 krasotkina olga
  • 7 篇 alexander gelbuk...
  • 7 篇 sung tien-wen
  • 7 篇 ying tan
  • 7 篇 lin yuh-chung
  • 6 篇 ryszard tadeusie...
  • 6 篇 marcin korytkows...

语言

  • 2,515 篇 英文
  • 306 篇 其他
  • 38 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=6th International Conference on Machine Learning and Data Mining in Pattern Recognition"
2836 条 记 录,以下是2371-2380 订阅
排序:
mining frequent trajectories of moving objects for location prediction  1
收藏 引用
5th international conference on machine learning and data mining in pattern recognition
作者: Morzy, Mikolaj Poznan Univ Tech Inst Comp Sci PL-60965 Poznan Poland
Advances in wireless and mobile technology flood us with amounts of moving object data that preclude all means of manual data processing. the volume of data gathered from position sensors of mobile phones, PDAs, or ve... 详细信息
来源: 评论
A novel star pattern recognition algorithm for star sensor
A novel star pattern recognition algorithm for star sensor
收藏 引用
6th international conference on machine learning and Cybernetics
作者: Jiang, Ming Ye, Yi-Zheng Yu, Ming-Yan Wang, Jin-Xiang Li, Bao-Hua Harbin Inst Technol Dept Elect Sci & Technol Harbin 150001 Peoples R China
Triangle algorithm is used widely in the field of star pattern recognition, but it also has disadvantage that recognition reliability decreases seriously in areas where there are many stars existing small angular sepa... 详细信息
来源: 评论
Adaptive edge weights for supervised graph embedding
Adaptive edge weights for supervised graph embedding
收藏 引用
6th international conference on machine learning and Cybernetics
作者: Pang, Yan-Wei Pan, Jing Liu, Zheng-Kai Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Tianjin Univ Technol & Educ Dept Elect Engn Tianjin 300072 Peoples R China Univ Sci & Technol China Informat Proc Ctr Hefei 230027 Peoples R China
Subspace learning is crucial for feature extraction and dimensionality reduction which play important role for pattern recognition and machine learning. It is generally believed that many subspace learning algorithms ... 详细信息
来源: 评论
data dimensionality reduction based on derivative characteristics of trained support vector regression
Data dimensionality reduction based on derivative characteri...
收藏 引用
6th international conference on machine learning and Cybernetics
作者: Zhang, De-Xian Bai, Li-Yuan Wang, Zi-Qiang Liu, Nan-Bo Henan Univ Technol Coll Informat Sci & Engn Zhengzhou 450052 Peoples R China
data dimensionality reduction(DDR) is an important preprocessing technique for data mining, pattern classification and so on. DDR aims at obtaining compact representation of the original data while reduce unimportant ... 详细信息
来源: 评论
Generic probability density function reconstruction for randomization in privacy-preserving data mining  1
收藏 引用
5th international conference on machine learning and data mining in pattern recognition
作者: Tan, Vincent Yan Fu Ng, See-Kiong MIT 77 Massachusetts Ave Cambridge MA 02139 USA Inst Infocomm Res I2R Singapore 119613 Singapore
data perturbation with random noise signals has been shown to be useful for data hiding in privacy-preserving data mining. Perturbation methods based on additive randomization allows accurate estimation of the Probabi... 详细信息
来源: 评论
learning with limited minority class data
Learning with limited minority class data
收藏 引用
6th international conference on machine learning and Applications
作者: Khoshgoftaar, Taghi M. Seiffert, Chris Van Hulse, Jason Napolitano, Amri Folleco, Andres Florida Atlantic Univ Boca Raton FL 33431 USA
A practical problem in data mining and machine learning is the limited availability of data. For example, in a binary classification problem it is often the case that examples of one class are abundant, while examples... 详细信息
来源: 评论
Outlier detection with kernel density functions  1
收藏 引用
5th international conference on machine learning and data mining in pattern recognition
作者: Latecki, Longin Jan Lazarevic, Aleksandar Pokrajac, Dragojub Temple Univ CIS Dept Philadelphia PA 19122 USA United Technol Res Ctr E Hartford CT 06108 USA Delware State Univ CIS Dept CREOSA AMRC Dover DE 19901 USA
Outlier detection has recently become an important problem in many industrial and financial applications. In this paper, a novel unsupervised algorithm for outlier detection with a solid statistical foundation is prop... 详细信息
来源: 评论
Apply support vector machine for CRM problem
Apply support vector machine for CRM problem
收藏 引用
6th international conference on machine learning and Cybernetics
作者: Liu, Bo Hao, Zhi-Feng Lu, Jie Liu, Shou-Qiang South China Univ Technol Coll Comp Sci & Engn Guangzhou 510641 Peoples R China Univ Technol Sydney Fac Informat Technol Sydney NSW 2007 Australia
data mining in the CRM aiming at learning available knowledge from the customer relationship by machine learning or statistical method to instruct the strategic behavior so that obtain the most profit. In recent years... 详细信息
来源: 评论
the research on flatness pattern recogniton based on CMAC neural network
The research on flatness pattern recogniton based on CMAC ne...
收藏 引用
6th international conference on machine learning and Cybernetics
作者: He, Hai-Tao Li, Yan Yanshan Univ Coll Informat Sci & Engn Qinhuangdao 066004 Peoples R China
In traditional flat neural network, the topologic configurations are needed to be rebuilt with the width of cold strip changing. So that, the large learn assignment, slow convergence and local minimal in the network a... 详细信息
来源: 评论
Equivalence learning in protein classification  1
收藏 引用
5th international conference on machine learning and data mining in pattern recognition
作者: Kertesz-Farkas, Attila Kocsor, Andras Pongor, Sandor Hungarian Acad Sci Res Grp Artificial Intelligence Aradi Vertanuk Tere 1 H-6720 Szeged Hungary Technische Univ Dresden Erasmus Program Dresden Germany Appl Intelligence Lab Szeged Hungary Int Ctr Genetic Engn & Biotechnol Bioinformat Grp Trieste Italy Hungarian Acad Sci Biol Res Ctre Bioinformat Grp Szeged Hungary
We present a method, called equivalence learning, which applies a two-class classification approach to object-pairs defined within a multi-class scenario. the underlying idea is that instead of classifying objects int... 详细信息
来源: 评论