咨询与建议

限定检索结果

文献类型

  • 2,623 篇 会议
  • 180 册 图书
  • 30 篇 期刊文献

馆藏范围

  • 2,832 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 1,886 篇 工学
    • 1,703 篇 计算机科学与技术...
    • 842 篇 软件工程
    • 324 篇 信息与通信工程
    • 276 篇 电气工程
    • 191 篇 生物工程
    • 170 篇 控制科学与工程
    • 154 篇 生物医学工程(可授...
    • 68 篇 安全科学与工程
    • 65 篇 光学工程
    • 64 篇 化学工程与技术
    • 57 篇 机械工程
    • 50 篇 交通运输工程
    • 46 篇 仪器科学与技术
    • 38 篇 电子科学与技术(可...
    • 33 篇 网络空间安全
  • 557 篇 理学
    • 296 篇 数学
    • 223 篇 生物学
    • 115 篇 统计学(可授理学、...
    • 104 篇 物理学
    • 80 篇 系统科学
    • 55 篇 化学
  • 405 篇 管理学
    • 270 篇 图书情报与档案管...
    • 188 篇 管理科学与工程(可...
    • 68 篇 工商管理
  • 262 篇 医学
    • 203 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 70 篇 药学(可授医学、理...
    • 35 篇 公共卫生与预防医...
  • 48 篇 法学
    • 43 篇 社会学
  • 41 篇 教育学
    • 37 篇 教育学
  • 30 篇 经济学
  • 27 篇 农学
  • 7 篇 文学
  • 5 篇 艺术学
  • 2 篇 军事学

主题

  • 483 篇 data mining
  • 483 篇 machine learning
  • 272 篇 pattern recognit...
  • 160 篇 feature extracti...
  • 155 篇 deep learning
  • 149 篇 artificial intel...
  • 112 篇 support vector m...
  • 106 篇 machine learning...
  • 94 篇 data mining and ...
  • 85 篇 training
  • 76 篇 data models
  • 74 篇 accuracy
  • 60 篇 computer imaging...
  • 56 篇 learning systems
  • 55 篇 neural networks
  • 48 篇 convolutional ne...
  • 47 篇 information syst...
  • 46 篇 computer applica...
  • 45 篇 predictive model...
  • 44 篇 big data

机构

  • 15 篇 national univers...
  • 15 篇 the islamic univ...
  • 15 篇 fujian provincia...
  • 13 篇 medical technica...
  • 13 篇 school of inform...
  • 13 篇 altoosi universi...
  • 11 篇 guangdong univer...
  • 10 篇 indian statistic...
  • 10 篇 school of manage...
  • 10 篇 department of bu...
  • 9 篇 institute of env...
  • 9 篇 department of to...
  • 8 篇 xi'an university...
  • 8 篇 al-zahraa univer...
  • 8 篇 college of mecha...
  • 8 篇 chinese academy ...
  • 7 篇 school of inform...
  • 7 篇 zhejiang univers...
  • 7 篇 institute of aut...
  • 7 篇 unsw sydney

作者

  • 17 篇 chang kuo-chi
  • 12 篇 de-shuang huang
  • 10 篇 chu kai-chun
  • 10 篇 mottl vadim
  • 9 篇 chang fu-hsiang
  • 9 篇 wang hsiao-chuan
  • 8 篇 zheng-guang wu
  • 8 篇 hongyi li
  • 8 篇 chaojie li
  • 8 篇 biao luo
  • 8 篇 petra perner
  • 8 篇 long cheng
  • 7 篇 yuhui shi
  • 7 篇 krasotkina olga
  • 7 篇 alexander gelbuk...
  • 7 篇 sung tien-wen
  • 7 篇 ying tan
  • 7 篇 lin yuh-chung
  • 6 篇 ryszard tadeusie...
  • 6 篇 marcin korytkows...

语言

  • 2,708 篇 英文
  • 110 篇 其他
  • 34 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=6th International Conference on Machine Learning and Data Mining in Pattern Recognition"
2833 条 记 录,以下是2651-2660 订阅
排序:
Why a window-based learning algorithm using an Effective Boltzmann machine is superior to the original BM learning algorithm
Why a window-based learning algorithm using an Effective Bol...
收藏 引用
international conference on Neural Information Processing
作者: M.I. Bellgard R.H. Taplin School of Information Technology Murdoch University Murdoch Australia Department of Mathematics & Statistics Murdoch University Murdoch Australia
Many pattern recognition problems are viewed as problems that can be solved using a window based artificial neural network (ANN). the paper details a unique, window based learning algorithm using the Effective Boltzma... 详细信息
来源: 评论
Rule generation from a rotation-invariant neural pattern recognition system
Rule generation from a rotation-invariant neural pattern rec...
收藏 引用
international conference on Neural Information Processing
作者: M. Fukumi K. Nakaura N. Akamatsu Department of Information Science and Intelligent Systems University of Tokushima Tokushima Japan SYSTEM LSI Limited Matsuyama Japan
A method of extracting rules from a rotation-invariant neural pattern recognition system formed using a genetic algorithm (GA) is presented. In particular, deterministic mutation (DM) is utilized to improve its conver... 详细信息
来源: 评论
Temporal series recognition using a new neural network structure T-CombNET
Temporal series recognition using a new neural network struc...
收藏 引用
international conference on Neural Information Processing
作者: M.V. Lamar M. Shoaib Bhuiyan A. Iwata Department of Electrical and Computer Engineering Nagoya Institute of Technology Nagoya Japan Educational Center for Information Processi Nagoya Institute of Technology Nagoya Japan
We present a new neural network structure dedicated to the temporal data series recognition, called T-CombNET (Temporal CombNET). the T-CombNET is a modified and improved version of the CombNET-II structure, which was... 详细信息
来源: 评论
A diagnostic tool for tree based supervised classification learning algorithms
A diagnostic tool for tree based supervised classification l...
收藏 引用
international conference on Neural Information Processing
作者: G. Holmes L. Trigg Dept. of Comput. Sci. Waikato Univ. Hamilton New Zealand Department of Computcr Science University of Waikato Hamilton New Zealand
the process of developing applications of machine learning and data mining that employ supervised classification algorithms includes the important step of knowledge verification. Interpretable output is presented to a... 详细信息
来源: 评论
Rule extraction from recurrent neural networks using a symbolic machine learning algorithm
Rule extraction from recurrent neural networks using a symbo...
收藏 引用
international conference on Neural Information Processing
作者: A. Vahed C.W. Omlin Dept. of Comput. Sci. Univ. of the Western Cape Bellville South Africa Department of Computer Science University of Stellenbosch South Africa
Addresses the extraction of knowledge from recurrent neural networks trained to behave like deterministic finite-state automata (DFAs). To date, methods used to extract knowledge from such networks have relied on the ... 详细信息
来源: 评论
Proceedings if the 1997 IEEE 9th IEEE international conference on Tools with Artificial Intelligence
Proceedings if the 1997 IEEE 9th IEEE International Conferen...
收藏 引用
Proceedings if the 1997 IEEE 9th IEEE international conference on Tools with Artificial Intelligence
the proceedings contains 78 papers from the 1997 IEEE international conference on Tools with Artificial Intelligence. Topics discussed include: neural networks;knowledge representation and reasoning;artificial intelli... 详细信息
来源: 评论
Building multiple prototype classifiers for handwritten character recognition using automatic statistical clustering techniques
Building multiple prototype classifiers for handwritten char...
收藏 引用
6th international conference on Image Processing and its Applications
作者: Rahman, AFR Fairhurst, MC Univ Kent Canterbury CT2 7NZ Kent England
Automatic statistical clustering techniques have been applied to implement different multiple prototype classifiers. Multiple prototyping offers an optimised solution to cases where there is significant variability in... 详细信息
来源: 评论
Object tracking in a varying environment
Object tracking in a varying environment
收藏 引用
6th international conference on Image Processing and its Applications
作者: Carbonaro, A Zingaretti, P Univ Ancona Ist Informat I-60128 Ancona Italy
An object tracking system based on a template matching approach is demonstrated. the system identifies the target and tracks a sequence of video-recorded images without losing the object by using a genetic algorithm (... 详细信息
来源: 评论
Applying backpropagation neural networks to gauging problems within fringe analysis
Applying backpropagation neural networks to gauging problems...
收藏 引用
6th international conference on Image Processing and its Applications
作者: Mills, H Burton, DR Lalor, MJ Liverpool John Moores Univ Liverpool L3 5UX Merseyside England
the backpropagation neural network is applied to three gauging fringe analysis applications: classification of five spherical surfaces of differing radii;classification of five real objects with surfaces of different ... 详细信息
来源: 评论
learning for feature selection and shape detection  9th
Learning for feature selection and shape detection
收藏 引用
9th international conference on Image Analysis and Processing, ICIAP 1997
作者: Cucchiara, Rita Piccardi, Massimo Bariani, Michele Mello, Paola Dipartimento di Ingegneria University of Ferrara via Saragat 1 FerraraI-44100 Italy
the paper proposes a general framework for shape detection based on supervised symbolic learning. Differently from other visual systems exploiting machine learning, the proposed architecture does not follow the object... 详细信息
来源: 评论