咨询与建议

限定检索结果

文献类型

  • 2,777 篇 会议
  • 141 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 3,006 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,548 篇 工学
    • 2,336 篇 计算机科学与技术...
    • 1,186 篇 生物医学工程(可授...
    • 976 篇 软件工程
    • 560 篇 光学工程
    • 284 篇 生物工程
    • 271 篇 电气工程
    • 224 篇 电子科学与技术(可...
    • 176 篇 控制科学与工程
    • 171 篇 信息与通信工程
    • 93 篇 仪器科学与技术
    • 38 篇 核科学与技术
    • 33 篇 力学(可授工学、理...
    • 33 篇 安全科学与工程
    • 29 篇 化学工程与技术
    • 25 篇 机械工程
  • 1,963 篇 医学
    • 1,479 篇 特种医学
    • 1,053 篇 临床医学
    • 409 篇 基础医学(可授医学...
    • 290 篇 药学(可授医学、理...
    • 230 篇 医学技术(可授医学...
    • 34 篇 公共卫生与预防医...
  • 702 篇 理学
    • 371 篇 数学
    • 342 篇 生物学
    • 327 篇 物理学
    • 119 篇 统计学(可授理学、...
    • 38 篇 化学
    • 21 篇 系统科学
  • 116 篇 管理学
    • 76 篇 图书情报与档案管...
    • 53 篇 管理科学与工程(可...
  • 18 篇 教育学
    • 18 篇 教育学
  • 8 篇 农学
  • 4 篇 法学
  • 3 篇 经济学

主题

  • 320 篇 image segmentati...
  • 124 篇 image registrati...
  • 120 篇 deep learning
  • 114 篇 medical imaging
  • 113 篇 magnetic resonan...
  • 62 篇 medical image se...
  • 60 篇 segmentation
  • 59 篇 image enhancemen...
  • 59 篇 artificial intel...
  • 57 篇 image reconstruc...
  • 57 篇 image processing...
  • 45 篇 pattern recognit...
  • 38 篇 deformation
  • 38 篇 magnetic resonan...
  • 37 篇 health informati...
  • 37 篇 image classifica...
  • 36 篇 computerized tom...
  • 34 篇 image analysis
  • 32 篇 contrastive lear...
  • 31 篇 computer graphic...

机构

  • 32 篇 ucl ctr med imag...
  • 21 篇 queens univ sch ...
  • 21 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 shanghai united ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 14 篇 univ n carolina ...
  • 14 篇 chinese univ hon...
  • 13 篇 hong kong univ s...
  • 12 篇 centre for medic...
  • 12 篇 department of co...
  • 12 篇 univ penn dept r...
  • 11 篇 univ n carolina ...
  • 11 篇 kings coll londo...
  • 10 篇 college of physi...

作者

  • 80 篇 rueckert daniel
  • 64 篇 shen dinggang
  • 58 篇 ourselin sebasti...
  • 51 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 47 篇 yang guang-zhong
  • 26 篇 fichtinger gabor
  • 25 篇 abolmaesumi pura...
  • 24 篇 ni dong
  • 24 篇 alexander daniel...
  • 23 篇 peters terry m.
  • 23 篇 glocker ben
  • 22 篇 modat marc
  • 22 篇 wang qian
  • 22 篇 hawkes david j.
  • 22 篇 davatzikos chris...
  • 20 篇 abugharbieh rafe...
  • 20 篇 yap pew-thian
  • 19 篇 golland polina
  • 19 篇 fu huazhu

语言

  • 2,959 篇 英文
  • 42 篇 其他
  • 7 篇 中文
检索条件"任意字段=6th International Conference on Medical Image Computing and Computer-Assisted Intervention"
3007 条 记 录,以下是131-140 订阅
排序:
the Role of Subgroup Separability in Group-Fair medical image Classification  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Jones, Charles Roschewitz, Melanie Glocker, Ben Imperial Coll London Dept Comp London England
We investigate performance disparities in deep classifiers. We find that the ability of classifiers to separate individuals into subgroups varies substantially across medical imaging modalities and protected character... 详细信息
来源: 评论
Probing the Efficacy of Federated Parameter-Efficient Fine-Tuning of Vision Transformers for medical image Classification  9th
Probing the Efficacy of Federated Parameter-Efficient Fine-T...
收藏 引用
27th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Alkhunaizi, Naif Almalik, Faris Al-Refai, Rouqaiah Naseer, Muzammal Nandakumar, Karthik Mohamed Bin Zayed Univ Artificial Intelligence Abu Dhabi U Arab Emirates
With the advent of large pre-trained transformer models, fine-tuning these models for various downstream tasks is a critical problem. Paucity of training data, the existence of data silos, and stringent privacy constr... 详细信息
来源: 评论
A Federated Learning-Friendly Approach for Parameter-Efficient Fine-Tuning of SAM in 3D Segmentation  9th
A Federated Learning-Friendly Approach for Parameter-Efficie...
收藏 引用
27th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Asokan, Mothilal Benjamin, Joseph Geo Yaqub, Mohammad Nandakumar, Karthik Mohamed bin Zayed Univ Artificial Intelligence MB Abu Dhabi U Arab Emirates
Adapting foundation models for medical image analysis requires finetuning them on a considerable amount of data because of extreme distribution shifts between natural (source) data used for pre-training and medical (t... 详细信息
来源: 评论
ViT-DAE: Transformer-Driven Diffusion Autoencoder for Histopathology image Analysis  1
收藏 引用
3rd Workshop on Deep Generative Models for medical image computing and computer assisted intervention (DGM4MICCAI) at the 26th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Xu, Xuan Kapse, Saarthak Gupta, Rajarsi Prasanna, Prateek SUNY Stony Brook New York NY 11794 USA
Generative AI has received substantial attention in recent years due to its ability to synthesize data that closely resembles the original data source. While Generative Adversarial Networks (GANs) have provided innova... 详细信息
来源: 评论
Diffusion Transformer U-Net for medical image Segmentation  26th
Diffusion Transformer U-Net for Medical Image Segmentation
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chowdary, G. Jignesh Yin, Zhaozheng SUNY Stony Brook Stony Brook NY 11794 USA
Diffusion model has shown its power on various generation tasks. When applying the diffusion model in medical image segmentation, there are a few roadblocks to remove: the semantic features required for the conditioni... 详细信息
来源: 评论
Operating Critical Machine Learning Models in Resource Constrained Regimes  26th
Operating Critical Machine Learning Models in Resource Const...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Selvan, Raghavendra Schon, Julian Dam, Erik B. Univ Copenhagen Dept Comp Sci Copenhagen Denmark Univ Copenhagen Dept Neurosci Copenhagen Denmark
the accelerated development of machine learning methods, primarily deep learning, are causal to the recent breakthroughs in medical image analysis and computer aided intervention. the resource consumption of deep lear... 详细信息
来源: 评论
Federated Impression for Learning with Distributed Heterogeneous Data  9th
Federated Impression for Learning with Distributed Heterogen...
收藏 引用
27th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Arya, Atrin Ayromlou, Sana Saadat, Armin Abolmaesumi, Purang Li, Xiaoxiao Univ British Columbia Elect & Comp Engn Dept Vancouver BC V6T IZ4 Canada Vector Inst Toronto ON M5G 0C6 Canada
Standard deep learning-based classification approaches may not always be practical in real-world clinical applications, as they require a centralized collection of all samples. Federated learning (FL) provides a parad... 详细信息
来源: 评论
Annotator Consensus Prediction for medical image Segmentation with Diffusion Models  26th
Annotator Consensus Prediction for Medical Image Segmentatio...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Amit, Tomer Shichrur, Shmuel Shaharabany, Tal Wolf, Lior Tel Aviv Univ Tel Aviv Israel
A major challenge in the segmentation of medical images is the large inter- and intra-observer variability in annotations provided by multiple experts. To address this challenge, we propose a novel method for multi-ex... 详细信息
来源: 评论
Memory Replay for Continual medical image Segmentation through Atypical Sample Selection  26th
Memory Replay for Continual Medical Image Segmentation Throu...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Bera, Sutanu Ummadi, Vinay Sen, Debashis Mandal, Subhamoy Biswas, Prabir Kumar Indian Inst Technol Kharagpur Kharagpur W Bengal India
medical image segmentation is critical for accurate diagnosis, treatment planning and disease monitoring. Existing deep learning-based segmentation models can suffer from catastrophic forgetting, especially when faced... 详细信息
来源: 评论
Towards Generalised Neural Implicit Representations for image Registration  1
收藏 引用
3rd Workshop on Deep Generative Models for medical image computing and computer assisted intervention (DGM4MICCAI) at the 26th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Zimmer, Veronika A. Hammernik, Kerstin Sideri-Lampretsa, Vasiliki Huang, Wenqi Reithmeir, Anna Rueckert, Daniel Schnabel, Julia A. Tech Univ Munich Sch Computat Informat & Technol Munich Germany Helmholtz Munich Munich Germany Tech Univ Munich Sch Med Klinikum Rechts Isar Munich Germany Munich Ctr Machine Learning MCML Munich Germany Imperial Coll London Dept Comp London England Kings Coll London London England
Neural implicit representations (NIRs) enable to generate and parametrize the transformation for image registration in a continuous way. By design, these representations are image-pair-specific, meaning that for each ... 详细信息
来源: 评论