咨询与建议

限定检索结果

文献类型

  • 2,780 篇 会议
  • 143 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 3,011 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,553 篇 工学
    • 2,341 篇 计算机科学与技术...
    • 1,188 篇 生物医学工程(可授...
    • 976 篇 软件工程
    • 560 篇 光学工程
    • 284 篇 生物工程
    • 272 篇 电气工程
    • 224 篇 电子科学与技术(可...
    • 176 篇 控制科学与工程
    • 172 篇 信息与通信工程
    • 93 篇 仪器科学与技术
    • 38 篇 核科学与技术
    • 33 篇 力学(可授工学、理...
    • 33 篇 安全科学与工程
    • 29 篇 化学工程与技术
    • 25 篇 机械工程
  • 1,967 篇 医学
    • 1,483 篇 特种医学
    • 1,053 篇 临床医学
    • 409 篇 基础医学(可授医学...
    • 290 篇 药学(可授医学、理...
    • 230 篇 医学技术(可授医学...
    • 34 篇 公共卫生与预防医...
  • 703 篇 理学
    • 372 篇 数学
    • 342 篇 生物学
    • 327 篇 物理学
    • 119 篇 统计学(可授理学、...
    • 38 篇 化学
    • 21 篇 系统科学
  • 116 篇 管理学
    • 76 篇 图书情报与档案管...
    • 53 篇 管理科学与工程(可...
  • 18 篇 教育学
    • 18 篇 教育学
  • 8 篇 农学
  • 4 篇 法学
  • 3 篇 经济学

主题

  • 320 篇 image segmentati...
  • 124 篇 image registrati...
  • 120 篇 deep learning
  • 115 篇 medical imaging
  • 114 篇 magnetic resonan...
  • 63 篇 medical image se...
  • 60 篇 segmentation
  • 59 篇 image enhancemen...
  • 59 篇 artificial intel...
  • 57 篇 image reconstruc...
  • 57 篇 image processing...
  • 45 篇 pattern recognit...
  • 38 篇 deformation
  • 38 篇 magnetic resonan...
  • 37 篇 health informati...
  • 37 篇 image classifica...
  • 36 篇 computerized tom...
  • 35 篇 image analysis
  • 32 篇 contrastive lear...
  • 31 篇 computer graphic...

机构

  • 32 篇 ucl ctr med imag...
  • 21 篇 queens univ sch ...
  • 21 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 shanghai united ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 14 篇 univ n carolina ...
  • 14 篇 chinese univ hon...
  • 13 篇 hong kong univ s...
  • 12 篇 centre for medic...
  • 12 篇 department of co...
  • 12 篇 univ penn dept r...
  • 11 篇 univ n carolina ...
  • 11 篇 kings coll londo...
  • 10 篇 college of physi...

作者

  • 80 篇 rueckert daniel
  • 64 篇 shen dinggang
  • 58 篇 ourselin sebasti...
  • 52 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 47 篇 yang guang-zhong
  • 26 篇 fichtinger gabor
  • 25 篇 abolmaesumi pura...
  • 24 篇 ni dong
  • 24 篇 alexander daniel...
  • 23 篇 peters terry m.
  • 23 篇 glocker ben
  • 22 篇 modat marc
  • 22 篇 wang qian
  • 22 篇 hawkes david j.
  • 22 篇 davatzikos chris...
  • 20 篇 abugharbieh rafe...
  • 20 篇 yap pew-thian
  • 19 篇 golland polina
  • 19 篇 fu huazhu

语言

  • 2,951 篇 英文
  • 55 篇 其他
  • 8 篇 中文
检索条件"任意字段=6th International Conference on Medical Image Computing and Computer-Assisted Intervention"
3012 条 记 录,以下是161-170 订阅
排序:
I2M2Net: Inter/Intra-modal Feature Masking Self-distillation for Incomplete Multimodal Skin Lesion Diagnosis  9th
I2M2Net: Inter/Intra-modal Feature Masking Self-distillation...
收藏 引用
27th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Wang, Ke Qiu, Linwei Zhang, Yilan Xie, Fengying Beihang Univ Sch Astronaut Image Proc Ctr Beijing 100191 Peoples R China King Abdullah Univ Sci & Technol KAUST Thuwal 239556900 Saudi Arabia
Multimodal learning has demonstrated promising advantages over single-modal approaches in the diagnosis of skin lesions. However, these methods often suffer from significant accuracy degradation when encountering miss... 详细信息
来源: 评论
Input Augmentation with SAM: Boosting medical image Segmentation with Segmentation Foundation Model  26th
Input Augmentation with SAM: Boosting Medical Image Segmenta...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Zhang, Yizhe Zhou, Tao Wang, Shuo Liang, Peixian Zhang, Yejia Chen, Danny Z. Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China Fudan Univ Sch Basic Med Sci Digital Med Res Ctr Shanghai 200032 Peoples R China Shanghai Key Lab MICCAI Shanghai 200032 Peoples R China Univ Notre Dame Dept Comp Sci & Engn Notre Dame IN 46556 USA
the Segment Anything Model (SAM) is a recently developed large model for general-purpose segmentation for computer vision tasks. SAM was trained using 11 million images with over 1 billion masks and can produce segmen...
来源: 评论
Intraoperative CT Augmentation for Needle-Based Liver interventions  26th
Intraoperative CT Augmentation for Needle-Based Liver Interv...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: El Hadramy, Sidaty Verde, Juan Padoy, Nicolas Cotin, Stephane INRIA Strasbourg France Univ Strasbourg ICube CNRS Strasbourg France IHU Strasbourg Strasbourg France
this paper addresses the need for improved CT-guidance during needle-based liver procedures (i.e., tumor ablation), while reduces the need for contrast agent injection during such interventions. To achieve this object... 详细信息
来源: 评论
Boundary Difference over Union Loss for medical image Segmentation  26th
Boundary Difference over Union Loss for Medical Image Segmen...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Sun, Fan Luo, Zhiming Li, Shaozi Xiamen Univ Dept Artificial Intelligence Xiamen Fujian Peoples R China
medical image segmentation is crucial for clinical diagnosis. However, current losses for medical image segmentation mainly focus on overall segmentation results, with fewer losses proposed to guide boundary segmentat... 详细信息
来源: 评论
Histopathological image Analysis with Style-Augmented Feature Domain Mixing for Improved Generalization  26th
Histopathological Image Analysis with Style-Augmented Featur...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Khamankar, Vaibhav Bera, Sutanu Bhattacharya, Saumik Sen, Debashis Biswas, Prabir Kumar Indian Inst Technol Kharagpur Dept Elect & Elect Commun Engn Kharagpur India
Histopathological images are essential for medical diagnosis and treatment planning, but interpreting them accurately using machine learning can be challenging due to variations in tissue preparation, staining and ima... 详细信息
来源: 评论
Learning Transferable Object-Centric Diffeomorphic Transformations for Data Augmentation in medical image Segmentation  26th
Learning Transferable Object-Centric Diffeomorphic Transform...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Kumar, Nilesh Gyawali, Prashnna K. Ghimire, Sandesh Wang, Linwei Rochester Inst Technol Rochester NY 14623 USA West Virginia Univ Morgantown WV 26506 USA Qualcomm Inc San Diego CA USA
Obtaining labelled data in medical image segmentation is challenging due to the need for pixel-level annotations by experts. Recent works have shown that augmenting the object of interest with deformable transformatio... 详细信息
来源: 评论
ULung:A Novel Approach for Lung image Segmentation  6
ULung:A Novel Approach for Lung Image Segmentation
收藏 引用
6th international conference on computing and Informatics, ICCI 2024
作者: Pal, Osim Kumar Roy, Shuvasish Modok, Anup Kumar Teethi, Tajmihir Islam Sarker, Siddhartha Kumer Dept. of Biomedical Engineering University of Kragujevac Kragujevac34000 Serbia Dept. of Electrical and Electronic Engineering American International University-Bangladesh Dhaka Bangladesh Dept. of Computer Science and Engineering Daffodil International University Ashulia Savar Bangladesh Dept. of Space Communication and Navigation Technology BSMRAAU Old Airport Dhaka Bangladesh
ULung is an innovative medical technology used for segmenting medical images in pulmonary diagnostics. It introduces a modified approach to analyzing and understanding pulmonary conditions. ULung employs cutting-edge ... 详细信息
来源: 评论
Text-Guided Cross-Position Attention for Segmentation: Case of medical image  26th
Text-Guided Cross-Position Attention for Segmentation: Case ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lee, Go-Eun Kim, Seon Ho Cho, Jungchan Choi, Sang Tae Choi, Sang-Il Dankook Univ Yongin Gyeonggi Do South Korea Univ Southern Calif Los Angeles CA 90007 USA Gachon Univ Seongnam Gyeonggi Do South Korea Chung Ang Univ Coll Med Seoul South Korea
We propose a novel text-guided cross-position attention module which aims at applying a multi-modality of text and image to position attention in medical image segmentation. To match the dimension of the text feature ... 详细信息
来源: 评论
Pre-trained Diffusion Models for Plug-and-Play medical image Enhancement  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Ma, Jun Zhu, Yuanzhi You, Chenyu Wang, Bo Univ Hlth Network Peter Munk Cardiac Ctr Toronto ON Canada Univ Toronto Dept Lab Med & Pathobiol Toronto ON Canada Vector Inst Artificial Intelligence Toronto ON Canada Swiss Fed Inst Technol Dept Informat Technol & Elect Engn Zurich Switzerland Yale Univ Dept Elect Engn New Haven CT USA Univ Toronto Dept Comp Sci Toronto ON Canada Univ Hlth Network AI Hub Toronto ON Canada
Deep learning-based medical image enhancement methods (e.g., denoising and super-resolution) mainly rely on paired data and correspondingly the well-trained models can only handle one type of task. In this paper, we a... 详细信息
来源: 评论
GPC: Generative and General Pathology image Classifier  26th
GPC: Generative and General Pathology Image Classifier
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Nguyen, Anh Tien Kwak, Jin Tae Korea Univ Sch Elect Engn Seoul 02841 South Korea
Deep learning has been increasingly incorporated into various computational pathology applications to improve its efficiency, accuracy, and robustness. Although successful, most previous approaches for image classific... 详细信息
来源: 评论