咨询与建议

限定检索结果

文献类型

  • 2,780 篇 会议
  • 143 篇 期刊文献
  • 89 册 图书

馆藏范围

  • 3,011 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,553 篇 工学
    • 2,341 篇 计算机科学与技术...
    • 1,188 篇 生物医学工程(可授...
    • 976 篇 软件工程
    • 560 篇 光学工程
    • 284 篇 生物工程
    • 272 篇 电气工程
    • 224 篇 电子科学与技术(可...
    • 176 篇 控制科学与工程
    • 172 篇 信息与通信工程
    • 93 篇 仪器科学与技术
    • 38 篇 核科学与技术
    • 33 篇 力学(可授工学、理...
    • 33 篇 安全科学与工程
    • 29 篇 化学工程与技术
    • 25 篇 机械工程
  • 1,967 篇 医学
    • 1,483 篇 特种医学
    • 1,053 篇 临床医学
    • 409 篇 基础医学(可授医学...
    • 290 篇 药学(可授医学、理...
    • 230 篇 医学技术(可授医学...
    • 34 篇 公共卫生与预防医...
  • 703 篇 理学
    • 372 篇 数学
    • 342 篇 生物学
    • 327 篇 物理学
    • 119 篇 统计学(可授理学、...
    • 38 篇 化学
    • 21 篇 系统科学
  • 116 篇 管理学
    • 76 篇 图书情报与档案管...
    • 53 篇 管理科学与工程(可...
  • 18 篇 教育学
    • 18 篇 教育学
  • 8 篇 农学
  • 4 篇 法学
  • 3 篇 经济学

主题

  • 320 篇 image segmentati...
  • 124 篇 image registrati...
  • 120 篇 deep learning
  • 115 篇 medical imaging
  • 114 篇 magnetic resonan...
  • 63 篇 medical image se...
  • 60 篇 segmentation
  • 59 篇 image enhancemen...
  • 59 篇 artificial intel...
  • 57 篇 image reconstruc...
  • 57 篇 image processing...
  • 45 篇 pattern recognit...
  • 38 篇 deformation
  • 38 篇 magnetic resonan...
  • 37 篇 health informati...
  • 37 篇 image classifica...
  • 36 篇 computerized tom...
  • 35 篇 image analysis
  • 32 篇 contrastive lear...
  • 31 篇 computer graphic...

机构

  • 32 篇 ucl ctr med imag...
  • 21 篇 queens univ sch ...
  • 21 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 shanghai united ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 14 篇 univ n carolina ...
  • 14 篇 chinese univ hon...
  • 13 篇 hong kong univ s...
  • 12 篇 centre for medic...
  • 12 篇 department of co...
  • 12 篇 univ penn dept r...
  • 11 篇 univ n carolina ...
  • 11 篇 kings coll londo...
  • 10 篇 college of physi...

作者

  • 80 篇 rueckert daniel
  • 64 篇 shen dinggang
  • 58 篇 ourselin sebasti...
  • 52 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 47 篇 yang guang-zhong
  • 26 篇 fichtinger gabor
  • 25 篇 abolmaesumi pura...
  • 24 篇 ni dong
  • 24 篇 alexander daniel...
  • 23 篇 peters terry m.
  • 23 篇 glocker ben
  • 22 篇 modat marc
  • 22 篇 wang qian
  • 22 篇 hawkes david j.
  • 22 篇 davatzikos chris...
  • 20 篇 abugharbieh rafe...
  • 20 篇 yap pew-thian
  • 19 篇 golland polina
  • 19 篇 fu huazhu

语言

  • 2,951 篇 英文
  • 55 篇 其他
  • 8 篇 中文
检索条件"任意字段=6th International Conference on Medical Image Computing and Computer-Assisted Intervention"
3012 条 记 录,以下是171-180 订阅
排序:
Co-learning Semantic-Aware Unsupervised Segmentation for Pathological image Registration  26th
Co-learning Semantic-Aware Unsupervised Segmentation for Pat...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Liu, Yang Gu, Shi Univ Elect Sci & Technol China Chengdu Peoples R China
the registration of pathological images plays an important role in medical applications. Despite its significance, most researchers in this field primarily focus on the registration of normal tissue into normal tissue... 详细信息
来源: 评论
Learning Expected Appearances for Intraoperative Registration During Neurosurgery  26th
Learning Expected Appearances for Intraoperative Registratio...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Haouchine, Nazim Dorent, Reuben Juvekar, Parikshit Torio, Erickson Wells, William M., III Kapur, Tina Golby, Alexandra J. Frisken, Sarah Harvard Med Sch Brigham & Womens Hosp Boston MA 02115 USA MIT 77 Massachusetts Ave Cambridge MA 02139 USA
We present a novel method for intraoperative patient-to-image registration by learning Expected Appearances. Our method uses preoperative imaging to synthesize patient-specific expected views through a surgical micros... 详细信息
来源: 评论
SegNetr: Rethinking the Local-Global Interactions and Skip Connections in U-Shaped Networks  26th
SegNetr: Rethinking the Local-Global Interactions and Skip C...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Cheng, Junlong Gao, Chengrui Wang, Fengjie Zhu, Min Sichuan Univ Coll Comp Sci Chengdu 610065 Peoples R China
Recently, U-shaped networks have dominated the field of medical image segmentation due to their simple and easily tuned structure. However, existing U-shaped segmentation networks: 1) mostly focus on designing complex... 详细信息
来源: 评论
Dynamic Curriculum Learning via In-Domain Uncertainty for medical image Classification  26th
Dynamic Curriculum Learning via In-Domain Uncertainty for Me...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Li, Chaoyi Li, Meng Peng, Can Lovell, Brian C. Univ Queensland Sch EECS St Lucia Qld 4072 Australia CSIRO DATA 61 Robot & Autonomous Syst Grp Pullenvale Australia
this paper presents an innovative approach to curriculum learning, which is a technique used to train learning models. Curriculum learning is inspired by the way humans learn, starting with simple examples and gradual... 详细信息
来源: 评论
Investigating Data Memorization in 3D Latent Diffusion Models for medical image Synthesis  1
收藏 引用
3rd Workshop on Deep Generative Models for medical image computing and computer assisted intervention (DGM4MICCAI) at the 26th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Dar, Salman Ul Hassan Ghanaat, Arman Kahmann, Jannik Ayx, Isabelle Papavassiliu, theano Schoenberg, Stefan O. Engelhardt, Sandy Heidelberg Univ Hosp Dept Internal Med 3 Grp Artificial Intelligence CardiovascularMed D-69120 Heidelberg Germany AI Hlth Innovat Cluster Heidelberg Germany German Ctr Cardiovasc Res DZHK Partner Site Heidelberg Mannheim Heidelberg Germany Heidelberg Univ Univ Med Ctr Mannheim Dept Radiol & Nucl Med Theodor Kutzer Ufer 1-3 D-68167 Mannheim Germany Univ Med Ctr Mannheim Dept Med Cardiol 1 Theodor Kutzer Ufer 1-3 D-68167 Mannheim Germany
Generative latent diffusion models have been established as state-of-the-art in data generation. One promising application is generation of realistic synthetic medical imaging data for open data sharing without compro... 详细信息
来源: 评论
Understanding Silent Failures in medical image Classification  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Bungert, Till J. Kobelke, Levin Jaeger, Paul F. German Canc Res Ctr Interact Machine Learning Grp Heidelberg Germany DKFZ Helmholtz Imaging Heidelberg Germany
To ensure the reliable use of classification systems in medical applications, it is crucial to prevent silent failures. this can be achieved by either designing classifiers that are robust enough to avoid failures in ... 详细信息
来源: 评论
Few Shot medical image Segmentation with Cross Attention Transformer  26th
Few Shot Medical Image Segmentation with Cross Attention Tra...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lin, Yi Chen, Yufan Cheng, Kwang-Ting Chen, Hao Hong Kong Univ Sci & Technol Hong Kong Peoples R China
medical image segmentation has made significant progress in recent years. Deep learning-based methods are recognized as data-hungry techniques, requiring large amounts of data with manual annotations. However, manual ... 详细信息
来源: 评论
Unsupervised Learning for Feature Extraction and Temporal Alignment of 3D+t Point Clouds of Zebrafish Embryos  26th
Unsupervised Learning for Feature Extraction and Temporal Al...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chen, Zhu Laube, Ina Stegmaier, Johannes Rhein Westfal TH Aachen Inst Imaging & Comp Vis Aachen Germany
Zebrafish are widely used in biomedical research and developmental stages of their embryos often need to be synchronized for further analysis. We present an unsupervised approach to extract descriptive features from 3... 详细信息
来源: 评论
Maximum Entropy on Erroneous Predictions: Improving Model Calibration for medical image Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Larrazabal, Agostina J. Martinez, Cesar Dolz, Jose Ferrante, Enzo UNL CONICET Res Inst Signals Syst & Computat Intelligence SinciFICH Santa Fe Argentina ETS Montreal LIVIA Montreal PQ Canada Tryolabs Montevideo Uruguay
Modern deep neural networks achieved remarkable progress in medical image segmentation tasks. However, it has recently been observed that they tend to produce overconfident estimates, even in situations of high uncert... 详细信息
来源: 评论
M3D-NCA: Robust 3D Segmentation with Built-In Quality Control  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Kalkhof, John Mukhopadhyay, Anirban Tech Univ Darmstadt Karolinenpl 5 D-64289 Darmstadt Germany
medical image segmentation relies heavily on large-scale deep learning models, such as UNet-based architectures. However, the real-world utility of such models is limited by their high computational requirements, whic... 详细信息
来源: 评论