咨询与建议

限定检索结果

文献类型

  • 180 篇 会议
  • 19 册 图书
  • 16 篇 期刊文献

馆藏范围

  • 215 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 142 篇 工学
    • 129 篇 计算机科学与技术...
    • 59 篇 软件工程
    • 24 篇 信息与通信工程
    • 23 篇 电气工程
    • 9 篇 控制科学与工程
    • 8 篇 光学工程
    • 8 篇 生物工程
    • 7 篇 生物医学工程(可授...
    • 4 篇 电子科学与技术(可...
    • 3 篇 仪器科学与技术
    • 3 篇 土木工程
    • 2 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 建筑学
  • 62 篇 理学
    • 46 篇 数学
    • 21 篇 物理学
    • 9 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 1 篇 化学
  • 28 篇 医学
    • 26 篇 临床医学
    • 2 篇 特种医学
  • 17 篇 管理学
    • 14 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 5 篇 文学
    • 5 篇 外国语言文学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 法学
    • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 50 篇 pattern recognit...
  • 12 篇 graph theory
  • 10 篇 image processing...
  • 9 篇 artificial intel...
  • 8 篇 pattern matching
  • 8 篇 computer graphic...
  • 8 篇 discrete mathema...
  • 6 篇 image segmentati...
  • 5 篇 cellular neural ...
  • 5 篇 graphic methods
  • 5 篇 computer imaging...
  • 4 篇 image processing
  • 4 篇 data structures
  • 4 篇 algorithm analys...
  • 3 篇 deep learning
  • 3 篇 computer applica...
  • 3 篇 semantics
  • 3 篇 image analysis
  • 3 篇 image recognitio...
  • 3 篇 robustness

机构

  • 3 篇 vienna universit...
  • 2 篇 medical universi...
  • 2 篇 univ bern inst c...
  • 2 篇 univ chinese aca...
  • 2 篇 department of co...
  • 2 篇 university of to...
  • 2 篇 vienna universit...
  • 2 篇 queens univ sch ...
  • 2 篇 department of co...
  • 2 篇 chinese acad sci...
  • 2 篇 national laborat...
  • 2 篇 univ chinese aca...
  • 2 篇 univ york dept c...
  • 2 篇 cnrs national ce...
  • 2 篇 pattern recognit...
  • 1 篇 pattern recognit...
  • 1 篇 chinese acad sci...
  • 1 篇 cas ctr excellen...
  • 1 篇 cnrs umr 6072 im...
  • 1 篇 lviv polytechnic...

作者

  • 20 篇 kropatsch walter...
  • 9 篇 haxhimusa yll
  • 8 篇 bunke horst
  • 6 篇 brun luc
  • 5 篇 ion adrian
  • 5 篇 riesen kaspar
  • 5 篇 hancock edwin r.
  • 4 篇 jiang xiaoyi
  • 4 篇 suen ching y.
  • 4 篇 zhao jun
  • 4 篇 vento mario
  • 3 篇 zhou jie
  • 3 篇 foggia pasquale
  • 3 篇 de sousa samuel
  • 3 篇 chen yubo
  • 3 篇 bunke h.
  • 3 篇 liu kang
  • 3 篇 pasquale foggia
  • 3 篇 mario vento
  • 2 篇 neuhaus michel

语言

  • 212 篇 英文
  • 2 篇 中文
  • 1 篇 其他
检索条件"任意字段=6th International Workshop on Graph-Based Representations in Pattern Recognition"
215 条 记 录,以下是1-10 订阅
排序:
13th IAPR-TC-15 international workshop on graph-based representations in pattern recognition, GbRPR 2023
13th IAPR-TC-15 International Workshop on Graph-Based Repres...
收藏 引用
13th IAPR-TC-15 international workshop on graph-based representations in pattern recognition, GbRPR 2023
the proceedings contain 16 papers. the special focus in this conference is on . the topics include: Maximal Independent Sets for60;Pooling in60;graph Neural Networks;detecting Abnormal Communication patterns in&...
来源: 评论
ABDPool: Attention-based Differentiable Pooling  26
ABDPool: Attention-based Differentiable Pooling
收藏 引用
26th international Conference on pattern recognition / 8th international workshop on Image Mining - theory and Applications (IMTA)
作者: Liu, Yue Cui, Lixin Wang, Yue Bai, Lu Cent Univ Finance & Econ 39 South Coll Rd Beijing Peoples R China
graph Neural Networks (GNNs) have achieved state-of-the-art performance on a wide range of graph-based tasks such as graph classification and node classification. this is because the unique structure of GNNs allows th... 详细信息
来源: 评论
Leveraging Knowledge graph Embeddings to Enhance Contextual representations for Relation Extraction  17th
Leveraging Knowledge Graph Embeddings to Enhance Contextual ...
收藏 引用
17th international Conference on Document Analysis and recognition workshop (ICDAR)
作者: Laleye, Frejus A. A. Rakotoson, Loic Massip, Sylvain Opscidia Paris France
Relation extraction task is a crucial and challenging aspect of Natural Language Processing. Several methods have surfaced as of late, exhibiting notable performance in addressing the task;however, most of these appro... 详细信息
来源: 评论
Data-driven Latent graph Structure Learning for Diagnosis of Alzheimer's Syndrome  26
Data-driven Latent Graph Structure Learning for Diagnosis of...
收藏 引用
26th international Conference on pattern recognition / 8th international workshop on Image Mining - theory and Applications (IMTA)
作者: Wang, Jianjia Wu, Chong Shanghai Univ Shanghai Inst Adv Commun & Data Sci Sch Comp Engn & Sci Shanghai Peoples R China Shanghai Univ Sch Comp Engn & Sci Shanghai 200444 Peoples R China
Complex systems often have a latent graph structure. Studying the underlying graph structure will help us to analyze the mechanisms of complex phenomena. However, it is a challenging problem to learn effective graph s... 详细信息
来源: 评论
Efficient Dense-graph Convolutional Network with Inductive Prior Augmentations for Unsupervised Micro-Gesture recognition  26
Efficient Dense-Graph Convolutional Network with Inductive P...
收藏 引用
26th international Conference on pattern recognition / 8th international workshop on Image Mining - theory and Applications (IMTA)
作者: Shah, Atif Chen, Haoyu Shi, Henglin Zhao, Guoying Univ Oulu Ctr Machine Vis & Signal Anal CMVS Oulu Finland
Skeleton-based action/gesture recognition has already witnessed excellent progress on processing large-scale, laboratory-based datasets with pre-defined skeleton joint topology. However, it's still an unsolved tas... 详细信息
来源: 评论
STIT: Spatio-Temporal Interaction Transformers for Human-Object Interaction recognition in Videos  26
STIT: Spatio-Temporal Interaction Transformers for Human-Obj...
收藏 引用
26th international Conference on pattern recognition / 8th international workshop on Image Mining - theory and Applications (IMTA)
作者: Almushyti, Muna Li, Frederick W. B. Univ Durham Dept Comp Sci Durham England Qassim Univ Educ Serv Buraydah Saudi Arabia
Recognizing human-object interactions is challenging due to their spatio-temporal changes. We propose the Spatio-Temporal Interaction Transformer-based (STIT) network to reason such changes. Specifically, spatial tran... 详细信息
来源: 评论
Quadratic Kernel Learning for Interpolation Kernel Machine based graph Classification  13th
Quadratic Kernel Learning for Interpolation Kernel Machine ...
收藏 引用
13th IAPR-TC-15 international workshop on graph-based representations in pattern recognition, GbRPR 2023
作者: Zhang, Jiaqi Liu, Cheng-Lin Jiang, Xiaoyi Faculty of Mathematics and Computer Science University of Münster Einsteinstrasse 62 Münster48149 Germany National Laboratory of Pattern Recognition Institute of Automation of Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing10049 China
Interpolating classifiers interpolate all the training data and thus have zero training error. Recent research shows their fundamental importance for high-performance ensemble techniques. Interpolation kernel machines... 详细信息
来源: 评论
6th international workshop on PRedictive Intelligence In MEdicine, PRIME 2023
6th International Workshop on PRedictive Intelligence In MEd...
收藏 引用
6th international workshop on PRedictive Intelligence In MEdicine, PRIME 2023
the proceedings contain 24 papers. the special focus in this conference is on international workshop on PRedictive Intelligence In MEdicine. the topics include: Deep Survival Analysis in60;Multiple Sclerosis;Federa...
来源: 评论
A Novel Brain Connectivity-Powered graph Signal Processing Approach for Automated Detection of Schizophrenia from Electroencephalogram Signals  10th
A Novel Brain Connectivity-Powered Graph Signal Processing A...
收藏 引用
10th Biennial international Conference on pattern recognition and Machine Intelligence (PReMI)
作者: Pain, Subrata Vimal, Naincy Samanta, Debasis Sarma, Monalisa Indian Inst Technol Adv Technol Dev Ctr Kharagpur 721302 India Indian Inst Technol Dept Comp Sci Kharagpur 721302 India Indian Inst Technol Subir Chowdhury Sch Qual & Reliabil Kharagpur 721302 India
Schizophrenia is a severe neural disorder that affects around 24 million individuals globally. In this context, Electroencephalogram (EEG) signal-based analysis and automated screening for Schizophrenia (SZ) have gain... 详细信息
来源: 评论
Reducing the Computational Complexity of the Eccentricity Transform of a Tree  13th
Reducing the Computational Complexity of the Eccentricity...
收藏 引用
13th IAPR-TC-15 international workshop on graph-based representations in pattern recognition, GbRPR 2023
作者: Banaeyan, Majid Kropatsch, Walter G. Pattern Recognition and Image Processing Group TU Wien Vienna Austria
this paper proposes a novel approach to reduce the computational complexity of the eccentricity transform (ECC) for graph-based representation and analysis of shapes. the ECC assigns to each point within a shape its g... 详细信息
来源: 评论