咨询与建议

限定检索结果

文献类型

  • 1,929 篇 会议
  • 241 册 图书
  • 24 篇 期刊文献

馆藏范围

  • 2,193 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 1,607 篇 工学
    • 1,334 篇 计算机科学与技术...
    • 467 篇 软件工程
    • 250 篇 电气工程
    • 235 篇 机械工程
    • 186 篇 光学工程
    • 179 篇 信息与通信工程
    • 119 篇 控制科学与工程
    • 96 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 42 篇 仪器科学与技术
    • 39 篇 电子科学与技术(可...
    • 30 篇 化学工程与技术
    • 21 篇 安全科学与工程
    • 18 篇 材料科学与工程(可...
    • 15 篇 交通运输工程
    • 13 篇 建筑学
  • 444 篇 理学
    • 257 篇 物理学
    • 202 篇 数学
    • 110 篇 生物学
    • 57 篇 统计学(可授理学、...
    • 22 篇 化学
  • 228 篇 医学
    • 200 篇 临床医学
    • 26 篇 基础医学(可授医学...
    • 22 篇 特种医学
  • 137 篇 管理学
    • 83 篇 图书情报与档案管...
    • 60 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 27 篇 艺术学
    • 27 篇 设计学(可授艺术学...
  • 16 篇 农学
    • 15 篇 作物学
  • 15 篇 法学
    • 13 篇 社会学
  • 9 篇 教育学
  • 7 篇 经济学
  • 5 篇 文学
  • 5 篇 军事学

主题

  • 321 篇 computer vision
  • 286 篇 pattern recognit...
  • 166 篇 artificial intel...
  • 122 篇 computer imaging...
  • 119 篇 feature extracti...
  • 101 篇 image processing...
  • 82 篇 face recognition
  • 68 篇 training
  • 61 篇 object detection
  • 60 篇 image segmentati...
  • 57 篇 computer applica...
  • 55 篇 deep learning
  • 51 篇 robustness
  • 47 篇 computer graphic...
  • 46 篇 cameras
  • 45 篇 visualization
  • 43 篇 semantics
  • 38 篇 machine learning
  • 38 篇 object recogniti...
  • 37 篇 shape

机构

  • 89 篇 univ chinese aca...
  • 67 篇 chinese acad sci...
  • 60 篇 national laborat...
  • 56 篇 chinese acad sci...
  • 50 篇 univ chinese aca...
  • 36 篇 chinese univ hon...
  • 36 篇 university of ch...
  • 31 篇 institute of aut...
  • 27 篇 chinese acad sci...
  • 26 篇 school of artifi...
  • 23 篇 univ sci & techn...
  • 22 篇 chinese academy ...
  • 18 篇 chinese acad sci...
  • 17 篇 chinese univ hon...
  • 16 篇 chinese acad sci...
  • 16 篇 univ chinese aca...
  • 15 篇 national laborat...
  • 15 篇 computer vision ...
  • 14 篇 tsinghua univers...
  • 14 篇 department of in...

作者

  • 32 篇 wang xiaogang
  • 29 篇 lu hanqing
  • 28 篇 tan tieniu
  • 28 篇 wang jinqiao
  • 23 篇 li stan z.
  • 22 篇 pal umapada
  • 21 篇 huang kaiqi
  • 21 篇 lei zhen
  • 21 篇 qiao yu
  • 19 篇 tieniu tan
  • 19 篇 hu weiming
  • 18 篇 tang xiaoou
  • 17 篇 xilin chen
  • 15 篇 wang liang
  • 15 篇 chen xilin
  • 15 篇 cheng jian
  • 14 篇 liu jing
  • 14 篇 tang ming
  • 13 篇 xiaoou tang
  • 13 篇 shiguang shan

语言

  • 2,163 篇 英文
  • 19 篇 中文
  • 17 篇 其他
  • 1 篇 土耳其文
检索条件"任意字段=7th Chinese Conference on Pattern Recognition and Computer Vision"
2194 条 记 录,以下是1131-1140 订阅
排序:
34th International conference on computer Safety, Reliability, and Security, SAFECOMP 2015
34th International Conference on Computer Safety, Reliabilit...
收藏 引用
34th International conference on computer Safety, Reliability, and Security, SAFECOMP 2015
the proceedings contain 34 papers. the special focus in this conference is on Flight Systems, Automotive Embedded Systems, Automotive Software, Error Detection and Medical Systems. the topics include: Medical devices,...
来源: 评论
Hierarchical Recurrent Neural Network for Skeleton Based Action recognition
Hierarchical Recurrent Neural Network for Skeleton Based Act...
收藏 引用
IEEE conference on computer vision and pattern recognition
作者: Yong Du Wei Wang Liang Wang Center for Research on Intelligent Perception and Computing CRIPAC Nat'l Lab of Pattern Recognition Institute of Automation Chinese Academy of Sciences
Human actions can be represented by the trajectories of skeleton joints. Traditional methods generally model the spatial structure and temporal dynamics of human skeleton with hand-crafted features and recognize human... 详细信息
来源: 评论
Object-Scene Convolutional Neural Networks for Event recognition in Images
Object-Scene Convolutional Neural Networks for Event Recogni...
收藏 引用
IEEE conference on computer vision and pattern recognition Workshops
作者: Limin Wang Zhe Wang Wenbin Du Yu Qiao Department of Information Engineering The Chinese University of Hong Kong Shenzhen key lab of Comp. Vis. & Pat. Rec. Shenzhen Institutes of Advanced Technology CAS China
Event recognition from still images is of great importance for image understanding. However, compared with event recognition in videos, there are much fewer research works on event recognition in images. this paper ad... 详细信息
来源: 评论
Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face recognition with Image Sets
Discriminant Analysis on Riemannian Manifold of Gaussian Dis...
收藏 引用
IEEE conference on computer vision and pattern recognition
作者: Wen Wang Ruiping Wang Zhiwu Huang Shiguang Shan Xilin Chen Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS
this paper presents a method named Discriminant Analysis on Riemannian manifold of Gaussian distributions (DARG) to solve the problem of face recognition with image sets. Our goal is to capture the underlying data dis... 详细信息
来源: 评论
Saliency Detection by Multi-Context Deep Learning
Saliency Detection by Multi-Context Deep Learning
收藏 引用
IEEE conference on computer vision and pattern recognition
作者: Rui Zhao Wanli Ouyang Hongsheng Li Xiaogang Wang Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Department of Electronic Engineering The Chinese University of Hong Kong
Low-level saliency cues or priors do not produce good enough saliency detection results especially when the salient object presents in a low-contrast background with confusing visual appearance. this issue raises a se... 详细信息
来源: 评论
Photometric Stereo with Near Point Lighting: A Solution by Mesh Deformation
Photometric Stereo with Near Point Lighting: A Solution by M...
收藏 引用
IEEE conference on computer vision and pattern recognition
作者: Wuyuan Xie Chengkai Dai Charlie C. L. Wang Department of Mechanical and Automation Engineering The Chinese University of Hong Kong
We tackle the problem of photometric stereo under near point lighting in this paper. Different from the conventional formulation of photometric stereo that assumes parallel lighting, photometric stereo under the near ... 详细信息
来源: 评论
Understanding Pedestrian Behaviors from Stationary Crowd Groups
Understanding Pedestrian Behaviors from Stationary Crowd Gro...
收藏 引用
IEEE conference on computer vision and pattern recognition
作者: Shuai Yi Hongsheng Li Xiaogang Wang Dept. of Electron. Eng. Chinese Univ. of Hong Kong Hong Kong China
Pedestrian behavior modeling and analysis is important for crowd scene understanding and has various applications in video surveillance. Stationary crowd groups are a key factor influencing pedestrian walking patterns... 详细信息
来源: 评论
Deeply learned face representations are sparse, selective, and robust
Deeply learned face representations are sparse, selective, a...
收藏 引用
IEEE conference on computer vision and pattern recognition
作者: Yi Sun Xiaogang Wang Xiaoou Tang Dept. of Inf. Eng. Chinese Univ. of Hong Kong Hong Kong China
this paper designs a high-performance deep convolutional network (DeepID2+) for face recognition. It is learned with the identification-verification supervisory signal. By increasing the dimension of hidden representa... 详细信息
来源: 评论
Recognize Complex Events from Static Images by Fusing Deep Channels
Recognize Complex Events from Static Images by Fusing Deep C...
收藏 引用
IEEE conference on computer vision and pattern recognition
作者: Yuanjun Xiong Kai Zhu Dahua Lin Xiaoou Tang Department of Information Engineering The Chinese University of Hong Kong
A considerable portion of web images capture events that occur in our personal lives or social activities. In this paper, we aim to develop an effective method for recognizing events from such images. Despite the shee... 详细信息
来源: 评论
Joint Multi-feature Spatial Context for Scene recognition in the Semantic Manifold
Joint Multi-feature Spatial Context for Scene Recognition in...
收藏 引用
IEEE conference on computer vision and pattern recognition
作者: Xinhang Song Shuqiang Jiang Luis Herranz Key Lab. of Intell. Inf. Process. of Chinese Acad. of Sci. Inst. of Comput. Technol. Beijing China
In the semantic multinomial framework patches and images are modeled as points in a semantic probability simplex. Patch theme models are learned resorting to weak supervision via image labels, which leads the problem ... 详细信息
来源: 评论