咨询与建议

限定检索结果

文献类型

  • 1,929 篇 会议
  • 240 册 图书
  • 25 篇 期刊文献

馆藏范围

  • 2,193 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 1,607 篇 工学
    • 1,334 篇 计算机科学与技术...
    • 467 篇 软件工程
    • 251 篇 电气工程
    • 235 篇 机械工程
    • 186 篇 光学工程
    • 178 篇 信息与通信工程
    • 119 篇 控制科学与工程
    • 96 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 41 篇 仪器科学与技术
    • 38 篇 电子科学与技术(可...
    • 30 篇 化学工程与技术
    • 21 篇 安全科学与工程
    • 18 篇 材料科学与工程(可...
    • 15 篇 交通运输工程
    • 13 篇 建筑学
  • 444 篇 理学
    • 257 篇 物理学
    • 202 篇 数学
    • 110 篇 生物学
    • 57 篇 统计学(可授理学、...
    • 22 篇 化学
  • 228 篇 医学
    • 200 篇 临床医学
    • 26 篇 基础医学(可授医学...
    • 22 篇 特种医学
  • 137 篇 管理学
    • 83 篇 图书情报与档案管...
    • 60 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 27 篇 艺术学
    • 27 篇 设计学(可授艺术学...
  • 16 篇 农学
    • 15 篇 作物学
  • 15 篇 法学
    • 13 篇 社会学
  • 9 篇 教育学
  • 7 篇 经济学
  • 5 篇 文学
  • 5 篇 军事学

主题

  • 321 篇 computer vision
  • 286 篇 pattern recognit...
  • 166 篇 artificial intel...
  • 121 篇 computer imaging...
  • 120 篇 feature extracti...
  • 101 篇 image processing...
  • 82 篇 face recognition
  • 68 篇 training
  • 61 篇 object detection
  • 60 篇 image segmentati...
  • 57 篇 computer applica...
  • 55 篇 deep learning
  • 51 篇 robustness
  • 47 篇 computer graphic...
  • 46 篇 cameras
  • 45 篇 visualization
  • 43 篇 semantics
  • 38 篇 machine learning
  • 38 篇 object recogniti...
  • 37 篇 shape

机构

  • 89 篇 univ chinese aca...
  • 67 篇 chinese acad sci...
  • 60 篇 national laborat...
  • 56 篇 chinese acad sci...
  • 50 篇 univ chinese aca...
  • 36 篇 chinese univ hon...
  • 36 篇 university of ch...
  • 31 篇 institute of aut...
  • 27 篇 chinese acad sci...
  • 26 篇 school of artifi...
  • 23 篇 univ sci & techn...
  • 22 篇 chinese academy ...
  • 18 篇 chinese acad sci...
  • 17 篇 chinese univ hon...
  • 16 篇 chinese acad sci...
  • 16 篇 univ chinese aca...
  • 15 篇 national laborat...
  • 15 篇 computer vision ...
  • 14 篇 tsinghua univers...
  • 14 篇 department of in...

作者

  • 32 篇 wang xiaogang
  • 29 篇 lu hanqing
  • 28 篇 tan tieniu
  • 28 篇 wang jinqiao
  • 23 篇 li stan z.
  • 22 篇 pal umapada
  • 21 篇 huang kaiqi
  • 21 篇 lei zhen
  • 21 篇 qiao yu
  • 19 篇 tieniu tan
  • 19 篇 hu weiming
  • 18 篇 tang xiaoou
  • 17 篇 xilin chen
  • 15 篇 wang liang
  • 15 篇 chen xilin
  • 15 篇 cheng jian
  • 14 篇 liu jing
  • 14 篇 tang ming
  • 13 篇 xiaoou tang
  • 13 篇 shiguang shan

语言

  • 2,144 篇 英文
  • 36 篇 其他
  • 23 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=7th Chinese Conference on Pattern Recognition and Computer Vision"
2194 条 记 录,以下是1271-1280 订阅
排序:
Deep Convolutional Network Cascade for Facial Point Detection
Deep Convolutional Network Cascade for Facial Point Detectio...
收藏 引用
26th IEEE conference on computer vision and pattern recognition (CVPR)
作者: Sun, Yi Wang, Xiaogang Tang, Xiaoou Chinese Univ Hong Kong Dept Informat Engn Hong Kong Hong Kong Peoples R China Chinese Univ Hong Kong Dept Elect Engn Hong Kong Hong Kong Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China
We propose a new approach for estimation of the positions of facial keypoints with three-level carefully designed convolutional networks. At each level, the outputs of multiple networks are fused for robust and accura... 详细信息
来源: 评论
Sparse Quantization for Patch Description
Sparse Quantization for Patch Description
收藏 引用
26th IEEE conference on computer vision and pattern recognition (CVPR)
作者: Boix, Xavier Gygli, Michael Roig, Gemma Van Gool, Luc Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland
the representation of local image patches is crucial for the good performance and efficiency of many vision tasks. Patch descriptors have been designed to generalize towards diverse variations, depending on the applic... 详细信息
来源: 评论
Multi-Level Discriminative Dictionary Learning towards Hierarchical Visual Categorization
Multi-Level Discriminative Dictionary Learning towards Hiera...
收藏 引用
26th IEEE conference on computer vision and pattern recognition (CVPR)
作者: Shen, Li Wang, Shuhui Sun, Gang Jiang, Shuqiang Huang, Qingming Univ Chinese Acad Sci Beijing Peoples R China Chinese Acad Sci Inst Comp Technol Key Lab Intell Info Proc Beijing Peoples R China Chinese Acad Sci Inst Software State Key Lab Comp Sci Beijing Peoples R China
For the task of visual categorization, the learning model is expected to be endowed with discriminative visual feature representation and flexibilities in processing many categories. Many existing approaches are desig... 详细信息
来源: 评论
An iterated l1 Algorithm for Non-smooth Non-convex Optimization in computer vision
An iterated <i>l</i><sub>1</sub> Algorithm for Non-smooth No...
收藏 引用
26th IEEE conference on computer vision and pattern recognition (CVPR)
作者: Ochs, Peter Dosovitskiy, Alexey Brox, thomas Pock, thomas Univ Freiburg Freiburg Germany Graz Univ Technol A-8010 Graz Austria
Natural image statistics indicate that we should use non-convex norms for most regularization tasks in image processing and computer vision. Still, they are rarely used in practice due to the challenge to optimize the... 详细信息
来源: 评论
Unnatural L0 Sparse Representation for Natural Image Deblurring
Unnatural <i>L</i><sub>0</sub> Sparse Representation for Nat...
收藏 引用
26th IEEE conference on computer vision and pattern recognition (CVPR)
作者: Xu, Li Zheng, Shicheng Jia, Jiaya Chinese Univ Hong Kong Hong Kong Hong Kong Peoples R China
We show in this paper that the success of previous maximum a posterior (MAP) based blur removal methods partly stems from their respective intermediate steps, which implicitly or explicitly create an unnatural represe... 详细信息
来源: 评论
Unsupervised Salience Learning for Person Re-identification
Unsupervised Salience Learning for Person Re-identification
收藏 引用
26th IEEE conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Rui Ouyang, Wanli Wang, Xiaogang Chinese Univ Hong Kong Dept Elect Engn Hong Kong Hong Kong Peoples R China
Human eyes can recognize person identities based on some small salient regions. However, such valuable salient information is often hidden when computing similarities of images with existing approaches. Moreover, many... 详细信息
来源: 评论
Local Sparse Discriminant Analysis For Robust Face recognition
Local Sparse Discriminant Analysis For Robust Face Recogniti...
收藏 引用
26th IEEE conference on computer vision and pattern recognition (CVPR)
作者: Kang, Cuicui Liao, Shengcai Xiang, Shiming Pan, Chunhong Chinese Acad Sci Inst Automat Beijing 100864 Peoples R China
the Linear Discriminant Analysis (LDA) algorithm plays an important role in pattern recognition. A common practice is that LDA and many of its variants generally learn dense bases, which are not robust to local image ... 详细信息
来源: 评论
Scale and Rotation Invariant Approach to Tracking Human Body Part Regions in Videos
Scale and Rotation Invariant Approach to Tracking Human Body...
收藏 引用
26th IEEE conference on computer vision and pattern recognition (CVPR)
作者: Bo, Yihang Jiang, Hao Chinese Acad Sci Inst Automat Beijing Peoples R China Boston Coll Dept Comp Sci Chestnut Hill MA 02167 USA
We propose a novel scale and rotation invariant method to track a human subject's body part regions in cluttered videos. the proposed method optimizes the assembly of body part region proposals with the spatial an... 详细信息
来源: 评论
Integrating the image identifiable principle of human cognition and computer vision to develop a new pattern recognition design system for smart home
Integrating the image identifiable principle of human cognit...
收藏 引用
7th International conference on Universal Access in Human-computer Interaction: Design Methods, Tools, and Interaction Techniques for eInclusion, UAHCI 2013, Held as Part of 15th International conference on Human-computer Interaction, HCI 2013
作者: Wang, Pin-Chin Tseng, Wan-Ting Cheng, Chun-Min Sung, Yi-Hsuan Chou, Yi-Chun Wu, Fong-Gong Department of Industrial Design National Cheng Kung University Tainan 70101 Taiwan
In this study, we invented a new way which classifies objects according to their functions and the regions of use. then we proceeded to innovate and design the systematic pattern on the objects. For this goal, we make... 详细信息
来源: 评论
Multi-target Tracking by Rank-1 Tensor Approximation
Multi-target Tracking by Rank-1 Tensor Approximation
收藏 引用
26th IEEE conference on computer vision and pattern recognition (CVPR)
作者: Shi, Xinchu Ling, Haibin Xing, Junliang Hu, Weiming Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing Peoples R China Temple Univ Dept Comp & Informat Sci Philadelphia PA 19122 USA
In this paper we formulate multi-target tracking (MTT) as a rank-1 tensor approximation problem and propose an l(1) norm tensor power iteration solution. In particular, a high order tensor is constructed based on traj... 详细信息
来源: 评论