咨询与建议

限定检索结果

文献类型

  • 1,927 篇 会议
  • 237 册 图书
  • 24 篇 期刊文献

馆藏范围

  • 2,187 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 1,606 篇 工学
    • 1,333 篇 计算机科学与技术...
    • 466 篇 软件工程
    • 250 篇 电气工程
    • 235 篇 机械工程
    • 186 篇 光学工程
    • 179 篇 信息与通信工程
    • 119 篇 控制科学与工程
    • 96 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 42 篇 仪器科学与技术
    • 39 篇 电子科学与技术(可...
    • 30 篇 化学工程与技术
    • 21 篇 安全科学与工程
    • 18 篇 材料科学与工程(可...
    • 15 篇 交通运输工程
    • 13 篇 建筑学
  • 444 篇 理学
    • 257 篇 物理学
    • 202 篇 数学
    • 110 篇 生物学
    • 57 篇 统计学(可授理学、...
    • 22 篇 化学
  • 228 篇 医学
    • 200 篇 临床医学
    • 26 篇 基础医学(可授医学...
    • 22 篇 特种医学
  • 137 篇 管理学
    • 83 篇 图书情报与档案管...
    • 60 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 27 篇 艺术学
    • 27 篇 设计学(可授艺术学...
  • 16 篇 农学
    • 15 篇 作物学
  • 15 篇 法学
    • 13 篇 社会学
  • 9 篇 教育学
  • 7 篇 经济学
  • 5 篇 文学
  • 5 篇 军事学

主题

  • 320 篇 computer vision
  • 286 篇 pattern recognit...
  • 166 篇 artificial intel...
  • 119 篇 feature extracti...
  • 118 篇 computer imaging...
  • 101 篇 image processing...
  • 82 篇 face recognition
  • 68 篇 training
  • 61 篇 object detection
  • 60 篇 image segmentati...
  • 57 篇 computer applica...
  • 54 篇 deep learning
  • 51 篇 robustness
  • 47 篇 computer graphic...
  • 46 篇 cameras
  • 45 篇 visualization
  • 43 篇 semantics
  • 38 篇 object recogniti...
  • 37 篇 shape
  • 36 篇 information syst...

机构

  • 89 篇 univ chinese aca...
  • 67 篇 chinese acad sci...
  • 59 篇 national laborat...
  • 56 篇 chinese acad sci...
  • 50 篇 univ chinese aca...
  • 36 篇 chinese univ hon...
  • 36 篇 university of ch...
  • 31 篇 institute of aut...
  • 27 篇 chinese acad sci...
  • 25 篇 school of artifi...
  • 23 篇 univ sci & techn...
  • 22 篇 chinese academy ...
  • 18 篇 chinese acad sci...
  • 17 篇 chinese univ hon...
  • 16 篇 chinese acad sci...
  • 16 篇 univ chinese aca...
  • 15 篇 national laborat...
  • 15 篇 computer vision ...
  • 14 篇 tsinghua univers...
  • 14 篇 department of in...

作者

  • 32 篇 wang xiaogang
  • 29 篇 lu hanqing
  • 28 篇 tan tieniu
  • 28 篇 wang jinqiao
  • 23 篇 li stan z.
  • 22 篇 pal umapada
  • 21 篇 huang kaiqi
  • 21 篇 lei zhen
  • 21 篇 qiao yu
  • 19 篇 tieniu tan
  • 19 篇 hu weiming
  • 18 篇 tang xiaoou
  • 17 篇 xilin chen
  • 15 篇 wang liang
  • 15 篇 chen xilin
  • 15 篇 cheng jian
  • 14 篇 liu jing
  • 14 篇 tang ming
  • 13 篇 xiaoou tang
  • 13 篇 shiguang shan

语言

  • 2,167 篇 英文
  • 19 篇 中文
  • 7 篇 其他
  • 1 篇 土耳其文
检索条件"任意字段=7th Chinese Conference on Pattern Recognition and Computer Vision"
2188 条 记 录,以下是651-660 订阅
排序:
An Object Detection Framework for Span Extraction in Question Answering
An Object Detection Framework for Span Extraction in Questio...
收藏 引用
IEEE International conference on Network Infrastructure and Digital Content (IC-NIDC)
作者: Tianyu Zhou Ping Gong School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China
Machine Reading Comprehension(MRC), including a series of tasks that test the ability of models to understand natural language, has received quite a few attention in Natural Language Processing(NLP). Most existing wor... 详细信息
来源: 评论
Visual Compositional Learning for Human-Object Interaction Detection  16th
Visual Compositional Learning for Human-Object Interaction D...
收藏 引用
16th European conference on computer vision, ECCV 2020
作者: Hou, Zhi Peng, Xiaojiang Qiao, Yu Tao, Dacheng UBTECH Sydney AI Centre School of Computer Science Faculty of Engineering The University of Sydney DarlingtonNSW2008 Australia Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China
Human-Object interaction (HOI) detection aims to localize and infer relationships between human and objects in an image. It is challenging because an enormous number of possible combinations of objects and verbs types... 详细信息
来源: 评论
Towards Low-Bit Quantization of Deep Neural Networks with Limited Data
Towards Low-Bit Quantization of Deep Neural Networks with Li...
收藏 引用
International conference on pattern recognition
作者: Yong Yuan Chen Chen Xiyuan Hu Silong Peng University of Chinese Academy of Sciences China Nanjing University of Science and Technology Nanjing China Beijing Visystem Co. Ltd
Recent machine learning methods use increasingly large deep neural networks to achieve state-of-the-art results in various tasks. Network quantization can effectively reduce computation and memory costs without modify... 详细信息
来源: 评论
Attention-Driven Dynamic Graph Convolutional Network for Multi-label Image recognition  16th
Attention-Driven Dynamic Graph Convolutional Network for Mul...
收藏 引用
16th European conference on computer vision, ECCV 2020
作者: Ye, Jin He, Junjun Peng, Xiaojiang Wu, Wenhao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China School of Biomedical Engineering the Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China
Recent studies often exploit Graph Convolutional Network (GCN) to model label dependencies to improve recognition accuracy for multi-label image recognition. However, constructing a graph by counting the label co-occu... 详细信息
来源: 评论
RBF-Softmax: Learning Deep Representative Prototypes with Radial Basis Function Softmax  1
收藏 引用
16th European conference on computer vision, ECCV 2020
作者: Zhang, Xiao Zhao, Rui Qiao, Yu Li, Hongsheng CUHK-SenseTime Joint Lab The Chinese University of Hong Kong Hong Kong SenseTime Research Hong Kong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Deep neural networks have achieved remarkable successes in learning feature representations for visual classification. However, deep features learned by the softmax cross-entropy loss generally show excessive intra-cl... 详细信息
来源: 评论
Decoupling GCN with DropGraph Module for Skeleton-Based Action recognition  16th
Decoupling GCN with DropGraph Module for Skeleton-Based Acti...
收藏 引用
16th European conference on computer vision, ECCV 2020
作者: Cheng, Ke Zhang, Yifan Cao, Congqi Shi, Lei Cheng, Jian Lu, Hanqing NLPR & AIRIA Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China CAS Center for Excellence in Brain Science and Intelligence Technology Beijing China School of Computer Science Northwestern Polytechnical University Xi’an China
In skeleton-based action recognition, graph convolutional networks (GCNs) have achieved remarkable success. Nevertheless, how to efficiently model the spatial-temporal skeleton graph without introducing extra computat... 详细信息
来源: 评论
Continuous Motion Numeral recognition Using RNN Architecture in Air-Writing Environment  5th
Continuous Motion Numeral Recognition Using RNN Architecture...
收藏 引用
5th Asian conference on pattern recognition, ACPR 2019
作者: Rahman, Adil Roy, Prasun Pal, Umapada Department of Information Technology Heritage Institute of Technology Kolkata India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
Air-writing, defined as character tracing in a three dimensional free space through hand gestures, is the way forward for peripheral-independent, virtual interaction with devices. While single unistroke character reco... 详细信息
来源: 评论
Enhanced Quadratic Video Interpolation  16th
Enhanced Quadratic Video Interpolation
收藏 引用
Workshops held at the 16th European conference on computer vision, ECCV 2020
作者: Liu, Yihao Xie, Liangbin Siyao, Li Sun, Wenxiu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
With the prosperity of digital video industry, video frame interpolation has arisen continuous attention in computer vision community and become a new upsurge in industry. Many learning-based methods have been propose... 详细信息
来源: 评论
Towards Causal Explanation Detection with Pyramid Salient-Aware Network  19
Towards Causal Explanation Detection with Pyramid Salient-Aw...
收藏 引用
19th China National conference on Computational Linguistics, CCL 2020
作者: Zuo, Xinyu Chen, Yubo Liu, Kang Zhao, Jun National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100049 China
Causal explanation analysis (CEA) can assist us to understand the reasons behind daily events, which has been found very helpful for understanding the coherence of messages. In this paper, we focus on Causal Explanati... 详细信息
来源: 评论
EfficientFCN: Holistically-Guided Decoding for Semantic Segmentation  1
收藏 引用
16th European conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Shatin Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论