咨询与建议

限定检索结果

文献类型

  • 474 篇 会议

馆藏范围

  • 474 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 361 篇 工学
    • 245 篇 计算机科学与技术...
    • 180 篇 电气工程
    • 156 篇 控制科学与工程
    • 41 篇 软件工程
    • 11 篇 机械工程
    • 11 篇 生物医学工程(可授...
    • 10 篇 信息与通信工程
    • 10 篇 生物工程
    • 9 篇 仪器科学与技术
    • 9 篇 动力工程及工程热...
    • 8 篇 交通运输工程
    • 6 篇 安全科学与工程
    • 6 篇 网络空间安全
    • 4 篇 土木工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 冶金工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 3 篇 石油与天然气工程
    • 3 篇 航空宇航科学与技...
  • 138 篇 理学
    • 101 篇 系统科学
    • 33 篇 数学
    • 12 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
    • 6 篇 物理学
  • 21 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 5 篇 医学
    • 5 篇 临床医学
  • 2 篇 经济学
  • 2 篇 法学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 47 篇 iterative learni...
  • 41 篇 mathematical mod...
  • 31 篇 data models
  • 23 篇 convergence
  • 23 篇 control systems
  • 23 篇 nonlinear system...
  • 22 篇 trajectory
  • 16 篇 predictive model...
  • 16 篇 fault detection
  • 16 篇 adaptation model...
  • 15 篇 deep learning
  • 14 篇 uncertainty
  • 14 篇 training
  • 13 篇 reinforcement le...
  • 13 篇 closed loop syst...
  • 13 篇 adaptive control
  • 12 篇 optimization
  • 12 篇 heuristic algori...
  • 11 篇 stability analys...
  • 11 篇 feature extracti...

机构

  • 10 篇 qingdao univ sci...
  • 7 篇 north china univ...
  • 6 篇 qingdao univ sci...
  • 6 篇 beijing key lab ...
  • 5 篇 beijing univ che...
  • 5 篇 beijing jiaotong...
  • 4 篇 beijing inst tec...
  • 4 篇 qingdao univ sci...
  • 4 篇 zhejiang univ te...
  • 3 篇 qingdao univ sci...
  • 3 篇 college of contr...
  • 3 篇 school of automa...
  • 3 篇 nankai univ coll...
  • 3 篇 research center ...
  • 3 篇 school of mathem...
  • 3 篇 jiangnan univ sc...
  • 3 篇 school of electr...
  • 3 篇 jiangnan univ in...
  • 3 篇 qingdao univ sci...
  • 3 篇 changchun univer...

作者

  • 10 篇 chi ronghu
  • 8 篇 ronghu chi
  • 8 篇 hou zhongsheng
  • 7 篇 zhongsheng hou
  • 6 篇 liu yang
  • 6 篇 wang li
  • 6 篇 li wang
  • 5 篇 liu keping
  • 5 篇 deqing huang
  • 5 篇 lu renquan
  • 5 篇 zhihuan song
  • 5 篇 ren hongru
  • 5 篇 sun zhongbo
  • 5 篇 huang deqing
  • 5 篇 zhang ruikun
  • 4 篇 xingping liu
  • 4 篇 su hongye
  • 4 篇 xie lei
  • 4 篇 song zhihuan
  • 4 篇 liu yi

语言

  • 460 篇 英文
  • 9 篇 中文
  • 5 篇 其他
检索条件"任意字段=7th IEEE Data Driven Control and Learning Systems Conference, DDCLS 2018"
474 条 记 录,以下是71-80 订阅
排序:
Model Free Adaptive Perimeter control for Two-Region Urban Traffic System with Input and Output Constraints  7
Model Free Adaptive Perimeter Control for Two-Region Urban T...
收藏 引用
ieee 7th data driven control and learning systems conference (ddcls)
作者: Lei, Ting Hou, Zhongsheng Beijing Jiaotong Univ Adv Control Syst Lab Beijing 100044 Peoples R China
Recent studies on urban traffic systems have shown that there exists a well-defined macroscopic fundamental diagram (MFD) in well-partitioned homogenous regions, which depicts a unimodal and low-scatter relationship b... 详细信息
来源: 评论
A New Measure of Dynamic Similarity for Nonlinear systems based on Gap Metric and Deterministic learning theory  7
A New Measure of Dynamic Similarity for Nonlinear Systems ba...
收藏 引用
ieee 7th data driven control and learning systems conference (ddcls)
作者: Chen, Danfeng Wang, Cong Zhu, Wenbo Foshan Univ Sch Automat Foshan 528231 Peoples R China South China Univ Technol Sch Automat Sci & Engn Guangzhou 510000 Guangdong Peoples R China
For nonlinear dynamical systems, structural stability is a fundamental concept. It provides a qualitative tool for analyzing the equivalent relation between a nonlinear dynamical system and its perturbed system. Curre... 详细信息
来源: 评论
On the Design and Analysis of a learning control Algorithm for Point-to-point Tracking Tasks  7
On the Design and Analysis of a Learning Control Algorithm f...
收藏 引用
ieee 7th data driven control and learning systems conference (ddcls)
作者: Lin, Na Chi, Ronghu Zhang, Ruikun Qingdao Univ Sci & Technol Sch Automat & Elect Engn Qingdao 266042 Peoples R China Qingdao Univ Sci & Technol Sch Math & Phys Qingdao 266042 Peoples R China
A simple iterative learning control approach is proposed to track specific target points in this work. For a general linear system, a P-type point-to-point ILC and a PD-type point-to-point ILC laws are designed, respe... 详细信息
来源: 评论
Adaptive Natural Policy Gradient in Reinforcement learning  7
Adaptive Natural Policy Gradient in Reinforcement Learning
收藏 引用
ieee 7th data driven control and learning systems conference (ddcls)
作者: Li, Dazi Qiao, Zengyuan Song, Tianheng Jin, Qibing Beijing Univ Chem Technol Inst Automat Beijing 100190 Peoples R China
In recent years, the policy gradient method in intensive learning has attracted wide attention with its good convergence performance. At the same time, regulation of hyper parameters is also a matter of concern. Based... 详细信息
来源: 评论
A Nonlinear Self-tuning control Method Based on Neural Wiener Model  7
A Nonlinear Self-tuning Control Method Based on Neural Wiene...
收藏 引用
ieee 7th data driven control and learning systems conference (ddcls)
作者: Zhang, Bi Zhao, Xin-Gang Xu, Zhuang Zhao, Ming Chinese Acad Sci Shenyang Inst Automat State Key Lab Robot Shenyang Liaoning Peoples R China
In this work, a novel nonlinear self-tuning adaptive control scheme based on the neural Wiener model has been proposed to copy with a class of nonlinear uncertain systems. First the parameterization model with uncerta... 详细信息
来源: 评论
High-Precision Tracking of Piezoelectric Actuator Using Dual-Loop Iterative learning control  7
High-Precision Tracking of Piezoelectric Actuator Using Dual...
收藏 引用
ieee 7th data driven control and learning systems conference (ddcls)
作者: Jian, Yupei Kang, Xin Yang, Wanqiu Min, Da Huang, Deqing Southwest Jiaotong Univ Sch Elect Engn Chengdu 610097 Sichuan Peoples R China
Suffering from rate-dependent hysteretic nonlinearity, accurate positioning of nanopositioning stage driven by piezoelectric actuators(PEAs) is hard to achieve and effective controllers are urgently needed. In this pa... 详细信息
来源: 评论
Adaptive Neural Network control For Vehicle Active Suspension System with Unknown Dead-Zones  7
Adaptive Neural Network Control For Vehicle Active Suspensio...
收藏 引用
ieee 7th data driven control and learning systems conference (ddcls)
作者: Zhang, Yan-Qi Liu, Lei Liu, Yan-Jun Liaoning Univ Technol Coll Sci Jinzhou 121001 Peoples R China
this paper presents the development of an adaptive neural network (NN) control method for non-linear quarter-vehicle model which has the characteristics of road disturbance, parameter uncertainties and unknown dead-zo... 详细信息
来源: 评论
A Modified Q-Filter Model-Inverse Based ILC and Its Application on PMLSM  7
A Modified Q-Filter Model-Inverse Based ILC and Its Applicat...
收藏 引用
ieee 7th data driven control and learning systems conference (ddcls)
作者: Cao, Jun Liu, Yang Li, Li Peng, Xiuyan Harbin Inst Technol Ctr Ultra Precis Optoelect Instrument Harbin 150001 Heilongjiang Peoples R China Harbin Engn Univ Coll Automat Harbin 150001 Heilongjiang Peoples R China
Iterative learning control (ILC) is essential for the achievement of high servo performance for linear motors. this paper investigates a modified Q-filter model-inversion based ILC. Compared to existing model-inversio... 详细信息
来源: 评论
Evolutionary Game Gynamics driven by Heterogeneous Self-learning Rules  7
Evolutionary Game Gynamics Driven by Heterogeneous Self-lear...
收藏 引用
ieee 7th data driven control and learning systems conference (ddcls)
作者: Zhou, Lei Wu, Bin Vasconcelos, Vitor V. Wang, Long Peking Univ Coll Engn Ctr Syst & Control Beijing 100871 Peoples R China Beijing Univ Posts & Telecommun Sch Sci Beijing 100876 Peoples R China Princeton Univ Dept Ecol & Evolutionary Biol Princeton NJ 08544 USA
How to achieve full cooperation among large numbers of individuals is essential for both artificial and biological systems. learning rules (or updating rules), which specify how individuals change their behavior over ... 详细信息
来源: 评论
Iterative learning Identification for Discrete Parabolic Distributed Parameter systems  7
Iterative Learning Identification for Discrete Parabolic Dis...
收藏 引用
ieee 7th data driven control and learning systems conference (ddcls)
作者: Liu, Lanlan Dai, Xisheng Zhou, Xingyu Yu, Shali Guangxi Higher Educ Inst Key Lab Ind Proc Intelligent Control Technol Liuzhou 545006 Peoples R China Guangxi Univ Sci & Technol Sch Elect & Informat Engn Liuzhou 545006 Peoples R China South China Univ Technol Guangzhou Coll Guangzhou 510640 Guangdong Peoples R China
this paper presents an iterative learning identification scheme for discrete parabolic distributed parameter systems with unknown curve surface parameters. the method achieves identification through iterative learning... 详细信息
来源: 评论