咨询与建议

限定检索结果

文献类型

  • 45 篇 会议
  • 1 册 图书

馆藏范围

  • 46 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 43 篇 工学
    • 41 篇 计算机科学与技术...
    • 34 篇 软件工程
    • 6 篇 光学工程
    • 4 篇 生物工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 信息与通信工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 34 篇 理学
    • 31 篇 数学
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 地球物理学
  • 1 篇 管理学
    • 1 篇 图书情报与档案管...

主题

  • 4 篇 variational meth...
  • 4 篇 image registrati...
  • 3 篇 inpainting
  • 3 篇 total variation
  • 3 篇 denoising
  • 2 篇 inverse problems
  • 2 篇 image segmentati...
  • 2 篇 partial differen...
  • 2 篇 nonlinear spectr...
  • 2 篇 diffusion
  • 2 篇 image processing
  • 2 篇 anisotropy
  • 2 篇 image compressio...
  • 1 篇 sampled methods
  • 1 篇 image fusion
  • 1 篇 structure tensor
  • 1 篇 super-resolution
  • 1 篇 assignment flow
  • 1 篇 sparse data
  • 1 篇 partial differen...

机构

  • 3 篇 saarland univ ma...
  • 2 篇 saarland univ ma...
  • 2 篇 univ bonn inst n...
  • 2 篇 univ bordeaux bo...
  • 2 篇 department of bi...
  • 2 篇 private univ hlt...
  • 2 篇 department of ma...
  • 1 篇 department of co...
  • 1 篇 univ copenhagen ...
  • 1 篇 univ politecn ca...
  • 1 篇 academic center ...
  • 1 篇 univ pompeu fabr...
  • 1 篇 beijing computat...
  • 1 篇 hsch wurzburg sc...
  • 1 篇 fraunhofer insti...
  • 1 篇 univ twente dept...
  • 1 篇 computer science...
  • 1 篇 univ helsinki in...
  • 1 篇 univ twente dept...
  • 1 篇 univ siegen hold...

作者

  • 6 篇 weickert joachim
  • 3 篇 peter pascal
  • 3 篇 rumpf martin
  • 2 篇 bruckstein alfre...
  • 2 篇 bertalmio marcel...
  • 2 篇 rosman guy
  • 2 篇 lauze francois
  • 2 篇 cohen laurent d.
  • 2 篇 duits remco
  • 2 篇 kimmel ron
  • 2 篇 effland alexande...
  • 2 篇 pierre fabien
  • 2 篇 imiya atsushi
  • 2 篇 moeller michael
  • 2 篇 welk martin
  • 1 篇 schonlieb carola...
  • 1 篇 st-onge etienne
  • 1 篇 parisotto simone
  • 1 篇 hansen jacob dan...
  • 1 篇 tai xue-cheng

语言

  • 46 篇 英文
检索条件"任意字段=7th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2019"
46 条 记 录,以下是1-10 订阅
排序:
7th international conference on scale space and variational methods in computer vision, ssvm 2019
7th International Conference on Scale Space and Variational ...
收藏 引用
7th international conference on scale space and variational methods in computer vision, ssvm 2019
the proceedings contain 44 papers. the special focus in this conference is on scale space and variational methods in computer vision. the topics include: Iterative Sampled methods for Massive and Separable Nonlinear I...
来源: 评论
Fast Marching Energy CNN  9th
Fast Marching Energy CNN
收藏 引用
9th international conference on scale space and variational methods in computer vision, ssvm 2023
作者: Bertrand, théo Makaroff, Nicolas Cohen, Laurent D. CEREMADE UMR CNRS 7534 University Paris Dauphine PSL Research University Paris75775 France
Leveraging geodesic distances and the geometrical information they convey is key for many data-oriented applications in imaging. Geodesic distance computation has been used for long for image segmentation using Image ... 详细信息
来源: 评论
A Model is Worth Tens of thousands of Examples  9th
A Model is Worth Tens of Thousands of Examples
收藏 引用
9th international conference on scale space and variational methods in computer vision, ssvm 2023
作者: Dagès, thomas Cohen, Laurent D. Bruckstein, Alfred M. Department of Computer Science Technion Israel Institute of Technology Haifa Israel Ceremade University Paris Dauphine PSL Research University UMR CNRS 7534 Paris75016 France
Traditional signal processing methods relying on mathematical data generation models have been cast aside in favour of deep neural networks, which require vast amounts of data. Since the theoretical sample complexity ... 详细信息
来源: 评论
Learning Posterior Distributions in Underdetermined Inverse Problems  9th
Learning Posterior Distributions in Underdetermined Inverse...
收藏 引用
9th international conference on scale space and variational methods in computer vision, ssvm 2023
作者: Runkel, Christina Moeller, Michael Schönlieb, Carola-Bibiane Etmann, Christian Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge United Kingdom Department of Electrical Engineering and Computer Science University of Siegen Siegen Germany
In recent years, classical knowledge-driven approaches for inverse problems have been complemented by data-driven methods exploiting the power of machine and especially deep learning. Purely data-driven methods, howev... 详细信息
来源: 评论
A Deep Image Prior Learning Algorithm for Joint Selective Segmentation and Registration  8th
A Deep Image Prior Learning Algorithm for Joint Selective Se...
收藏 引用
8th international conference on scale space and variational methods in computer vision, ssvm 2021
作者: Burrows, Liam Chen, Ke Torella, Francesco Department of Mathematical Sciences and Centre for Mathematical Imaging Techniques University of Liverpool Liverpool United Kingdom Liverpool Vascular and Endovascular Service Liverpool University Hospitals LiverpoolL7 8XP United Kingdom
Effective variational models exist for either image segmentation or image registration for a given class of problems, though robustness is a longstanding issue. this paper proposes a new and effective variational mode... 详细信息
来源: 评论
variational Image Registration for Inhomogeneous-Resolution Pairs  7th
Variational Image Registration for Inhomogeneous-Resolution ...
收藏 引用
7th international conference on scale space and variational methods in computer vision (ssvm)
作者: Hosoya, Kento Imiya, Atsushi Chiba Univ Sch Sci & Engn Inage Ku Yayoi Cho 1-33 Chiba 2638522 Japan Chiba Univ Inst Management & Informat Technol Inage Ku Yayoi Cho 1-33 Chiba 2638522 Japan
We propose a variational image registration method for a pair of images with different resolutions. Traditional image registration methods match images assuming that the resolutions of the reference and target images ... 详细信息
来源: 评论
Lattice Metric space Application to Grain Defect Detection  7th
Lattice Metric Space Application to Grain Defect Detection
收藏 引用
7th international conference on scale space and variational methods in computer vision (ssvm)
作者: He, Yuchen Kang, Sung Ha Georgia Inst Technol Sch Math Atlanta GA 30332 USA
We propose a new model for grain defect detection based on the theory of lattice metric space [7]. the lattice metric space (L, d(L)) shows outstanding advantages in representing lattices. Utilizing this advantage, we... 详细信息
来源: 评论
Functional Liftings of Vectorial variational Problems with Laplacian Regularization  7th
Functional Liftings of Vectorial Variational Problems with L...
收藏 引用
7th international conference on scale space and variational methods in computer vision (ssvm)
作者: Vogt, thomas Lellmann, Jan Univ Lubeck Inst Math & Image Comp MIC Maria Goeppert Str 3 D-23562 Lubeck Germany
We propose a functional lifting-based convex relaxation of variational problems with Laplacian-based second-order regularization. the approach rests on ideas from the calibration method as well as from sublabel-accura... 详细信息
来源: 评论
A Balanced Phase Field Model for Active Contours  7th
A Balanced Phase Field Model for Active Contours
收藏 引用
7th international conference on scale space and variational methods in computer vision (ssvm)
作者: Molnar, Jozsef Tasnadi, Ervin Horvath, Peter Hungarian Acad Sci Biol Res Ctr Szeged Hungary Univ Helsinki Inst Mol Med Finland Helsinki Finland
In this paper we present a balanced phase field model that eliminates the often undesired curvature-dependent shrinking of the zero level set, while maintaining the smooth interface necessary to calculate fundamental ... 详细信息
来源: 评论
Joint CNN and variational Model for Fully-Automatic Image Colorization  7th
Joint CNN and Variational Model for Fully-Automatic Image Co...
收藏 引用
7th international conference on scale space and variational methods in computer vision (ssvm)
作者: Mouzon, thomas Pierre, Fabien Berger, Marie-Odile Univ Lorraine Lab Lorrain Rech Informat & Ses Applicat CNRS INRIA Projet MagritUMR 7503 Vandoeuvre Les Nancy France
this paper aims to couple the powerful prediction of the convolutional neural network (CNN) to the accuracy at pixel scale of the variational methods. In this work, the limitations of the CNN-based image colorization ... 详细信息
来源: 评论